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Abstract. This paper presents a study focused on comparing driving behavior 
of expert and novice drivers in a mid-range driving simulator with the intention 
of evaluating the validity of driving simulators for driver training. For the 
investigation, measurements of performance, psychophysiological 
measurements, and self-reported user experience under different conditions of 
driving tracks and driving sessions were analyzed. We calculated correlations 
between quantitative and qualitative measures to enhance the reliability of the 
findings. The experiment was conducted involving 14 experienced drivers and 
17 novice drivers. The results indicate that driving behaviors of expert and 
novice drivers differ from each other in several ways but it heavily depends on 
the characteristics of the task. Moreover, our belief is that the analytical 
framework proposed in this paper can be used as a tool for selecting appropriate 
driving tasks as well as for evaluating driving performance in driving 
simulators. 
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driving performance, psychophysiology, EEG, Emotiv EPOC, player 
experience. 

1 Introduction 

Motor vehicle crashes and fatalities are among the highest ranked cause of deaths 
worldwide. For instance, according to U.S. department of transportation, 33,561 
people have lost their lives on roadways because of crashes in 2012 [1]. According to 
literature, about 20-30% of crashes occur as the lack of capability of drivers to orient 
their attention on such situations because of bad vigilance such as boredom [2], [3]. 
This prompts the need for an additional learning experience other than the driving 
skills required to maneuver a vehicle in different road traffic and environmental 
conditions for which driving simulators are the ideal experiential learning 
environments [4], [5]. 
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Much research reports on the successful use of driving simulators to enhance 
learning. For instance, a game-based driving simulator has been successfully used to 
improve traffic safety variables such as speed, use of turn signals and rear-view 
mirrors, headway distance, and lane change behavior [6]. Some other advantages of 
using driving simulators are faster exposition to a wide variety of traffic situations, 
feedback from different perspectives, unlimited repetition of educational situations, 
automated and objectivistic assessment, demonstration of maneuvers, analyze risky 
scenarios without endangering participants, and controllable and adaptive learning 
tasks [7], [8], [9]. Although simulators are increasingly used for training purposes, 
there is a question of training effectiveness of simulations, that is, the knowledge 
about the transferability of performance and competence achieved in a simulator 
when it is applied in real world. According to literature, numerous studies have 
addressed this problem, for example [6], [9], [10], and [11]. However, still simulation 
research lacks good theory-based approaches or the use of academically acceptable 
methodologies for evaluating the training effectiveness of simulations [4], [12]. 

According to Feinstein and Cannon [12], this problem stems from there still being 
a disagreement among researchers about measures that can effectively validate a 
simulation or the required level of fidelity in a simulation-based training environment. 
The validation should necessarily evaluate the accurate (algorithmic) representation of 
a desired phenomena, participants’ perception about the phenomena being modeled, 
and the phenomena’s relation to the real world situation being modeled. However, a 
validation focusing only on the above mentioned aspects would become meaningless 
unless the desired output of an educational simulation is not taken into consideration. 
For instance, although high fidelity simulators are capable of rendering a higher 
degree of realism, it can actually interrupt the learning experience by over stimulating 
novice trainees. The same issue has been raised by Bell and colleagues [4] from a 
different perspective and their suggestion is that designers should focus on the 
instructional features first and technology choices as the end point of the design 
process. These problems are also faced by designers of so called serious games in 
their effort to balance three aspects in a serious game, which are, intrinsically 
motivating game play, immediate feedback, and the learning impact [13, p.5]. 

Considering the importance of the problem, we previously conducted a study in 
which we compared driving in the real world with in a driving simulator using both 
performance and psychophysiological measures [14]. However, in that study we did 
not compare the difference between novice and expert driving behaviors in order to 
derive implications of learning effects of novice drivers in the simulator context. To 
this end, our present study has compared the driving behavior of expert and novice 
drivers in a mid-range driving simulator by analyzing and triangulating various 
aspects of driving behavior. Although our approach is mainly driven by data and 
inductive reasoning, we deem that our approach is methodologically sound and valid 
as most scholars have justified the use of triangulation of data to strengthen the 
evidence as well as raised the importance of inductive reasoning for extending current 
knowledge boundaries [15], [16]. 

The paper is organized as follows. Section 2 discusses three commonly used 
measures in for evaluating simulator effectiveness. Section 3 presents the method 
which includes the justification of our approach, the experimental setup, and the 
procedures we used for analyzing different types of measures. The results are 
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presented in Section 4 and the findings are discussed in greater detail in Section 5. 
Finally, Section 6 includes the conclusions of our study. 

2 Validating Simulation-Based Training 

Although there are numerous theories about experiential learning such as Kolb’s 
experiential learning cycle [17], there are still difficulties formulating an effective 
relationship between action (experience) and knowledge (conceptualization). This 
ultimately makes it hard to determine adequate assessment strategies as well as to 
‘prove’ a simulator’s effectiveness for training [18], [19]. Therefore, taking in-situ 
action as the expected outcome of an effective training situation, many researchers 
report on approaches that are mainly driven by data to validate training effectiveness 
of simulations. 

According to literature, there are three different measures for evaluating the 
equivalence of driving between different groups and contexts, that is, performance, 
psychophysiological, and subjective measures [10], [11], [20], [21], [22], [23], [24]. 
Performance measures monitor physical and behavioral changes (e.g., lane changing 
behavior, vehicle speed, head movements, and steering wheel variance) and capture 
how well the user is performing a given task. Psychophysiological measures are the 
resulting physiological changes such as heart-rate variability (HRV), galvanic skin 
response (GSR), and electroencephalographic (EEG) signals for psychological 
manipulations, and it covers a broad range of aspects of perception and attention and 
related processes. However, it is very difficult to interpret psychophysiological 
indices as it often contains many-to-many relationships between psychological 
elements and physiological elements [25], [26]. Finally, subjective measures are 
based on self-reported measures of user experience which is usually captured using 
questionnaires and interviews. However, subjective measures are considered 
problematic because of the unreliability of self-reported emotional information and 
the requirement to interrupt user experience [27]. 

Numerous studies (e.g., [6], [9], [10], and [11]) have evaluated training 
effectiveness of simulations using one or a combination of the above measures.  
However, those studies seem to have omitted either direct comparisons between 
driving in the real world and driving in a simulator or triangulation of different 
measures to enhance the validity of results. 

3 Method 

3.1 Our Approach 

As described in the introduction section, we are primarily using a data driven 
approach with triangulation of different measures to evaluate the training 
effectiveness of simulations. For this validation, we identified two options, that is, 
either to test novice drivers in the real world after having trained in a simulator or to 

Interaction Design and Architecture(s) Journal - IxD&A, N.19, 2013, pp. 115-131



compare novice drivers against expert drivers in the same learning context (the 
simulator). However, after considering the ethical side of exposing novice drivers to 
drive in real world (see [24]), we decided to go with the latter. Therefore, our 
approach is based on comparing novice drivers’ driving behavior with that of expert 
drivers in a driving simulator using various measures. This approach is basically 
driven by the assumption that expert drivers behave similarly (i.e., their performance 
including decision making) across the two contexts (see [28] for a discussion of 
expert level of skills). For selecting expert drivers, we relied on their driving 
experience, that is, the number of years of driving after obtaining the driving license 
as well as the ability to instruct others about driving. 

For the experiment, we employed a mid-range driving simulator. Although it is not 
a high fidelity simulator, we deem that the technological quality of the simulator was 
sufficient as it can imitate both physical behavior and scenarios to a satisfying degree 
for training tasks (see [12] for a discussion about the need for a balance between 
realism and instructional capabilities of a simulation). As the measures of our 
experiment, we collected data about several performance, psychophysiological, and 
subjective variables. However, rather than relying on the results of such measures 
separately, we tried to combine different measures such as by using correlation 
analysis to enhance the reliability of our findings. 

Apart from other types of measures, we considered EEG based vigilance estimators 
as a way to look into how higher cognitive processes are involved with driving. 
Vigilance refers to the ability of organisms to maintain their focus of attention and to 
remain alert to stimuli over prolonged periods of time [2], and in the introduction 
section we discussed the importance of driver vigilance and its relation to road 
fatalities. The complex relationships between driver vigilance, road scene, vehicle 
speed, peripheral vision, and mental workload are discussed in [20] and [23]. 

3.2 Equipments and Tools 

The main equipment of the experiment, the driving simulator, comprised of a real car 
surrounded by seven screens covering the whole field-of-view for the driver, 
including the parts covered by the rear-view mirrors (220x30 degrees forward and 
60x30 degrees rear). Both sound vibrations and the car’s fan helped to create an 
illusion of movement (see [6] and [8] for more details about the driving simulator). 
The physical performance data were gathered from the game engine itself (e.g., speed 
of the vehicle) as well as by attaching relevant sensors (e.g., linear potentiometers) to 
brake and gas pedals and steering wheel and by sampling the readings at a rate of 
about 100 S/s using a microcontroller module and feeding the data to the PC. 
Moreover, two cameras provided the frontal field-of-view and view of the driver. For 
generating sceneries and relevant physical behavior we employed two different game 
engines – VDrift (http://vdrift.net/) and OGRE (http://www.ogre3d.org/) – which 
come with realistic physics. 

For capturing psychophysiological measures, we employed the Emotiv EPOC 
neurofeedback headset (http://www.emotiv.com/). The headset uses 14 sensors and 
two references to capture EEG potentials from several important scalp locations as 
well as providing two-axis gyro data for detecting head movements. There are several 
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benefits of using the Emotiv headset such as low cost, wireless communication, and it 
is easy to setup. However, it has certain limitations including lower sampling rate, 
high signal-to-noise ratio, and it does not cover some important scalp positions. 
Nevertheless, the headset was ideal for our experiment as it is relatively unobtrusive 
(see [29] for a discussion of sensors for highly dynamic environments) and we were 
able to eliminate its limitations to a greater degree by accessing raw EEG data and 
focusing on slowly varying emotional information rather than time-locked EEG 
activities (see Section 3.5). The headset has been used extensively for research 
purposes (see http://www.emotiv.com/ for a list of published papers which have used 
the EPOC headset). 

We primarily used Matlab [30] and EEGLAB [31] for data analysis including 
segmenting, re-sampling, interpolating and smoothing of data, filtering EEG data into 
different bands, and obtaining certain graphs. For comparing means of different 
groups balanced one-way ANOVA (Analysis of Variance) was used. ANOVA offers 
a greater flexibility for comparing means of more than two groups which is not 
possible with Student’s t-test [40, p.115]. 

3.3 Participants 

A total of 31 healthy participants (mean age = 26.7 years and SD = 12.9 years; 24 
male and seven female) took part in the experiment after providing a written 
statement of informed consent. The participants were recruited within three driver 
categories: driving instructors from a well known driving school (N = 8; 27-56 years; 
mean age = 40.9 years and SD = 11.5 years; five male and three female), regular 
drivers within the university staff (N = 6; 26-51 years; mean age = 36.7 years and SD 
= 8.4 years; three male and three female), and novice drivers from another driving 
school (N = 17; 16-18 years; mean age = 17.0 years and SD = 0.4 years; 16 male and 
one female). Both driving instructors and regular drivers had extensive driving 
experiences (mean driving years of 23.6 and 18.2, respectively). After each 
experiment, each participant received a free lunch and refreshments as compensation 
for their involvement in the experiment. 

3.4 Driving Tasks 

In the driving simulator, expert drivers participated in two driving sessions, whereas 
novice drivers participated in up to three sessions. As our previous study [14] 
revealed that there is no substantial difference between the driving behaviors of 
driving instructors and regular drivers, we grouped both of them as expert drivers. In 
each driving session, they drove in the OGRE based highway traffic track having 
levels of increasing difficulties for about 10 minutes; in VDrift Monaco track (city 
area like track, but no traffic) for about 5 minutes; and finally in VDrift LeMans track 
(landscape like track, but no traffic) for about 5 minutes. Fig. 1 shows screenshots of 
the tracks of the simulator driving session. 
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Fig. 1. Screenshots of (a), OGRE based highway traffic track; (b), VDrift Monaco track; and 
(c), VDrift LeMans track.  

The tasks were labeled using a naming convention of the form <driver category: E-
expert and N-novice>-<driving session: 1, 2 or 3>-<driving track: T30-Highway, 
T41- Monaco, T51- LeMans>. For example, ‘E-S1-T30’ refers to ‘Expert drivers - 
Session 1 - Highway traffic track’. Each subject completed a questionnaire in a quiet 
office soon after each session of driving. In the questionnaire each subject had to 
answer questions about their driving experience, disturbances, and several other 
aspects. 

3.5 Data Analysis 

For analyzing the data, we employed the same analytical framework we proposed in 
our previous study [14] but we extended it further to incorporate qualitative measures. 
In the analysis, we identified four types of performance measures, that is, speed of the 
car, steering wheel angle, gas pressure, and brake pressure. After preconditioning the 
data (e.g., removing noise and fixing discontinuities), we derived eight variables from 
those measures, that is, means of speed, means of steer, means of gas, means of brake, 
SDs of speed, SDs of steer, SDs of gas, and SDs of brake. Values for the 
abovementioned variables were calculated in the following manner, for instance, 
means of speed of a driver group was calculated by averaging each member driver’s 
mean speed values of a given driving track whereas SDs of speed of a driver group 
was calculated by averaging each member driver’s standard deviation of speed values 
of a given driving track. 

EEG data were analyzed in the following way. First, for each channel data of each 
EEG recording we obtained the band powers for consecutive one-second durations of 
seven frequency bands, that is, delta (1-4Hz), theta (4-7Hz), alpha1 (7-10Hz), alpha2 
(10-13Hz), beta1 (13-22Hz), beta2 (22-30Hz) and gamma (30-45Hz). The decision to 
categorize the EEG spectrum to different frequency bands was motivated by literature 
[26], [32] which suggests that different frequency bands are associated with different 
states of the mind, that is, delta with deep dreamless sleep, theta with light sleep or 
impaired information processing, alpha with awake but relaxed state without 
processing much information, beta with the normal state of wakefulness with 
increased cognitive activity and attention, and gamma with various types of learning 
and higher cognitive processing. After the categorization, to eliminate noise from 
each component, we used the gyro x and gyro y data whose signal magnitudes exceed 

(a) (b) (c) 
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a threshold (i.e., 3*standard deviation) and linear interpolation to fill up the gaps. 
Next, each band power component was smoothed using the loess algorithm (local 
regression using weighted linear least squares and a second degree polynomial model) 
with a 30 second time span. According to literature (e.g., [21], [33], and [34]), EEG 
features with minute-scale smoothing can be used as vigilance estimators. After this 
step, each vigilance component was processed to find up to six peaks, which were 
highest, and up to six valleys, which were lowest, within the waveform. At the same 
time corresponding (within the same timeline) values of each driving variable (i.e., 
speed, steer, gas, and brake) were recorded. Next, features were filtered by 
performing ANOVA F-tests to identify whose means were significantly different 
between a particular driving variable’s values at peaks and valleys (p < 0.05). Finally, 
we averaged the values over different frequency bands and used as measures to 
compare between the driving behaviors of different groups and tasks. For example, 
Figure 2 contains a graphical representation of the values obtained for peaks and 
valleys as well as mean values and standard deviations of speed. To quantitatively 
determine the features of the graphs, we obtained two types of measures called VG 
and TD, which were calculated as follows: 

VG = means of X – mean X at valleys . (1) 

TD = | 2*standard deviation of X / (mean X at peaks – mean X at valleys) | . (2) 

Where X is a performance variable. 
The measure VG (1) determines the relationship between a performance variable 

and driver vigilance. For instance, if the VG measure is negative between speed and 
vigilance, then it implies that driver vigilance gets increased when the driver drives in 
low speeds.The measure TD (2) is associated with the task demand of a variable. That 
is, if TD is less than one it implies that the task demand is lower than the comfort 
range; otherwise the task demand is higher (we refer to comfort range as the zone 
between peaks and valleys of vigilance associated with a performance variable). 

 
Fig. 2. Graphical representations of the values at peaks and valleys of EEG vigilance estimators 
and means and standard deviations (as error bars) of speed. 
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The user experience questionnaire contained the seven dimensions of player 

experience questionnaire, commonly known as the In-Game Experience 
Questionnaire (iGEQ), and several other questions to rank the disturbances from the 
experimental setup and certain other aspects. The iGEQ measures a user’s game 
experience within seven dimensions, that is, Immersion, Tension, Competence, Flow, 
Negative Affect, Positive Affect, and Challenge [35], [36]. Each dimension in the 
iGEQ is formed by two questions, e.g., tension using “I felt frustrated” and “I felt 
skillful,” and uses a five point Likert-type scale for ranking. Three additional 
questions were included to test their satisfaction of driving, self-evaluation of their 
driving skills improvement, and their opinions on using the simulator for driver 
training. Table 1 presents the questions comprised of iGEQ dimensions and the three 
additional questions. 

Table 1. Some questions in the user experience questionnaire. 

Question iGEQ dimension 

I was interested in the game's story Immersion 
I felt successful Competence 

I felt bored Negative Affect 
I found it impressive Immersion 

I forgot everything around me Flow 
I felt frustrated Tension 

I found it tiresome Negative affect 
I felt irritable Tension 

I felt skillful Competence 
I felt completely absorbed Flow 

I felt content Positive affect 
I felt challenged Challenge 

I felt stimulated Challenge 
I felt good Positive Affect 

How much are you satisfied with your driving skills, during your 
last driving session? NA 

Have you improved your driving skills during your last driving 
session? NA 

Do you recommend the driving simulator for training drivers? NA 
 
To check whether self-reported measures of player experience correlates with 

psychophysiological measures we have followed the following procedure. After the 
step that obtained up to six peaks and six valleys for each vigilance component 
described above, the features were filtered based on means that were not significantly 
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different from each other between peaks and valleys (P < 0.05). Next, values of peaks 
and valleys were averaged over each frequency band as well as differences between 
the averages were also recorded. Finally, Pearson’s correlation coefficients were 
calculated between iGEQ dimensions and each set of EEG based vigilance estimators. 

4 Results 

As the first step, it was required to check whether different conditions of the 
experiment, that is, driver type, driving session, and driving track, have affected the 
readings differently or to what degree. For testing this aspect a multiway ANOVA F-
test was performed (Table 2) involving the eight performance variables and 
considering only those tasks of which the other conditions were stable among both 
groups. 

Table 2. Multiway ANOVA 𝐹-test values for testing the effects of multiple factors. 

Variables 
Means 
of 
speed 

Means 
of steer 

Means 
of gas 

Means 
of 
brake 

SDs of 
speed 

SDs of 
steer 

SDs of 
gas 

SDs of 
brake 

Driver 
type 
F(1,160) 

53.9*** 45.6*** 52.4*** 29.8*** 40.3*** 48.1*** 27.0*** 30.5*** 

Driving 
session 
F(1,160) 

5.66* 4.57* 4.55* 2.43 5.77* 1.39 4.67* 2.90 

Driving 
track 
F(2,160) 

63.2*** 143*** 201*** 15.1*** 15.3*** 87.3*** 19.0*** 6.92** 

*, **, *** significant differences at P < 0.05, P < 0.01, and P < 0.001, respectively. 
 

According to Table 2, there are significant main effects on driver type and driving 
track (P < 0.001). However, the mean effect on driving session is less significant (P < 
0.05) and limited to a few variables. To make our analysis consistent with our 
previous study [14], we have considered only three variables for further analysis, that 
is, means of speed, SDs of steer, and means of gas. However, before proceeding 
further, we have compared several other conditions such as disturbances from the 
mere presence of researchers and different types of equipment that may have 
influenced the subjects differently during different experimental conditions. Yet, we 
found that none of the predicted sources have affected the experimental conditions to 
a substantial degree as both means and standard deviations were very low in each 
case. 
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4.1 Comparing Driving Behavior of the Two Driver Types Based on 
Performance Measures 

The graphs were obtained for the three variables considered over different driver 
types, driving sessions, and driving tracks (Figure 3). 

 

 

Fig. 3. Values of means of speed (MSP), SDs of steer (SDST), and means of gas (MGS) of 
expert (E) and novice (N) drivers in different sessions and tracks of driving in the simulator and 
standard deviations based error bars. 

According to Figure 3, mean speed values have increased during successive 
sessions (except N-S3-T30) and the values are higher in expert drivers than in novice 
drivers. Moreover, in T30, standard deviation values of speed of expert drivers are 
lower than novice drivers, whereas, in T41/T51, the order is reversed. A similar 
pattern can be observed with respect to MGS which some exceptions (i.e., E-S2-T30 
and N-S3-T30). The SDST values also show somewhat similar pattern as of the other 
two variables, again with some exceptions (i.e., E-S2-T30, N-S3-T30, and N-S3-
T41). 

4.2 Comparing Driving Behavior of the Two Driver Types Based on Both 
Performance and Psychophysiological Measures 

The results of the combined analysis of performance and psychophysiological 
measures described in Section 3.5 are graphically represented in Figure 4. 
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Fig. 4. Graphical representations of the measure of VG (top) and the measure of TD (bottom) 
over different driver types, sessions, and driving tracks 

The measure of VG represented in Figure 4 can be summarized as follows. Driver 
vigilance gets increased under low speed driving, increased steering, or increased 
braking. However, gas causes to increase driver vigilance in T30 but not in T41/T51. 
In T41/T51, driver vigilance caused by steering has affected novice drivers more than 
expert drivers. However, in T41/T51, driver vigilance caused by speed has affected 
expert drivers more than novice drivers. 

Apart from the above, according to the graph of the measure of TD in Figure 4, 
T30 is more task demanding for novice drivers as compared to expert drivers. 
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However, in T41/T51, the effect is almost the opposite as the tracks are more task 
demanding for expert drivers as compared to novice drivers. Moreover, the tracks 
T41/T51 seem to be more comfortable for novice drivers as TD values are less than 
one of both speed and steer variables. 

4.3 Comparing Driving Behavior of the Two Driver Types Based on Self-
Reported Measures of User Experience 

The results of the In-Game Experience Questionnaire (iGEQ) as well as three 
additional questions of the self-reported questionnaire are given in Table 3. 

Table 3. Means and standard deviations (within parentheses) of iGEQ dimensions and other 
questions of different groups and driving tasks. 

Variable E-S1 E-S2 N-S1 N-S2 N-S3 
n=14 n=13 n=18 n=15 n=6 

[iGEQ] Immersion 2.3 (0.8) 2.3 (0.9) 2.6 (1.0) 2.1 (0.9) 2.3 (1.1) 
[iGEQ] Competence 1.6 (0.8) 2.2 (0.8) 2.1 (0.5) 2.3 (0.6) 2.7 (0.7) 
[iGEQ] Flow 2.4 (0.9) 2.1 (0.5) 1.7 (1.0) 1.5 (0.9) 1.7 (1.3) 
[iGEQ] Tension 1.8 (1.1) 1.1 (1.0) 0.6 (0.6) 0.6 (0.8) 0.1 (0.2) 
[iGEQ] Negative affect 1.1 (1.0) 1.1 (1.2) 0.6 (0.6) 0.6 (0.6) na 
[iGEQ] Positive affect 1.9 (1.0) 2.6 (1.0) 3.0 (0.6) 3.0 (0.5) 3.2 (0.9) 
[iGEQ] Challenge 2.3 (0.8) 2.5 (0.9) 2.8 (0.8) 2.2 (0.8) 2.4 (0.7) 
Satisfaction of driving 1.5 (0.9) 2.7 (0.6) 2.2 (0.8) 2.7 (0.9) 2.7 (1.0) 
Whether skills improved? 0.8 (1.3) 2.4 (1.5) 1.3 (1) 1.7 (0.9) 2 (1.3) 
Whether recommending 
the simulator for driver 
training? 1.7 (1.1) 2.6 (0.9) 1.9 (1.3) 1.9 (1.1) 2 (1.3) 

 
The pair-wise comparison of means of the seven iGEQ dimensions between the 

pairs (E-S1, E-S2), (E-S1, N-S1), (N-S1, N-S2), (E-S2, N-S2), and (N-S2, N-S3) 
reported that statistically significant differences of means exist in tension, negative 
affect, and positive affect dimensions of (E-S1, N-S2)  and flow dimension of (E-S2, 
N-S2) [ANOVA; p < 0.05]. According to statistically significant results of Table 3, 
during the first session in the simulator, both tension and negative affect of expert 
drivers (1.8 and 1.1, respectively) are higher than that of novice drivers (0.6 and 0.6, 
respectively) while positive affect is lower in expert drivers (1.9) than in novice 
drivers (3.0). Further, expert drivers have experienced flow more than novice drivers 
during the second session in the simulator (2.1 and 1.5, respectively). According to 
the results of other variables, both driver categories have increased their satisfaction 
of driving in the simulator and their recommendation of using the driving simulator 
for driver training as well as reporting that their skills have been improved as they 
practiced more sessions in the simulator. 
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4.4 Correlation Analysis between Self-Reported Measures of User Experience 
and Psychophysiological Features 

Table 4 contains the significant Pearsons’s correlation coefficients between self-
reported measures of player experience and psychophysiological measures (P < 0.05). 
Psychophysiological features represent the seven frequency bands as well as three 
vigilance states, that is, vigilance high (peaks), vigilance low (valleys), and vigilance 
difference. 

Table 4. Significant correlation coefficients of the correlations between self-reported measures 
of player experience and psychophysiological measures (P < 0.05). The corresponding EEG 
frequency bands are D-delta, T-theta, A-alpha, B-beta, and G-gamma. 

Variable Vigilance high Vigilance low Vigilance difference 

[iGEQ] Competence (-) B-G [-0.9,-
0.95] 

(-) D-B-G [-0.88,-
0.95] 

(-) B2-G [-0.94,-
0.97] 

[iGEQ] Flow na (+) G [0.91] na 

[iGEQ] Tension (+) B-G 
[0.91,0.93] 

(+) D-B2-G 
[0.91,0.93] (+) B-G [0.91,0.92] 

[iGEQ] Positive affect (-) A2-B-G [-0.9,-
0.96] 

(-) D-B2-G [-0.93,-
0.94] 

(-) A2-B-G [-0.91,-
0.97] 

Satisfaction of driving (-) T-A-B-G [-
0.89,-0.93] 

(-) T-A-B1 [-0.91,-
0.98] 

(-) T-A-B-G [-0.89,-
0.94] 

Whether skills improved? na (-) A [-0.91,-0.94] na 

 
According to Table 4, both flow and tension have significant and positive 

correlations with psychophysiological features. Conversely, competence, positive 
affect, satisfaction of driving, and response about the skills report significant but 
negative correlations with psychophysiological features. However, no significant 
correlation with any other component was found. The correlations are different based 
on both polarities of correlations and the frequency bands associated with them. 

5 Discussion 

The main aim of our study was to compare driving behaviors of expert drivers and 
novice drivers in a mid-range driving simulator in order to identify measures for 
evaluating the fitness of driving simulators for driver training. The results in Table 3 
were in favor of the aim of our study where both expert and novice drivers have 
recommended the driving simulator as a training environment in addition to positive 
reflections about their learning. However, we had to answer two concerns implied by 
certain results of our study, that is, experts are more adaptive in the simulator 
environment than novice drivers and/or novice drivers have been over stimulated in 
the simulator environment to exhibit their mere performance rather than 
demonstrating their training effectiveness. For instance, Figure 3 showed that novice 
drivers are attributed with higher degrees of speed, gas, and brake as compared to 
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expert drivers; Figure 4 reveled that expert drivers were more adaptive in the highway 
traffic track whereas novice drivers were more adaptive in the racing tracks; and 
Table 3 revealed that although the first driving session was unpleasant to experts, they 
experienced flow more than novice drivers during their second driving session. 
Therefore, if we accept the fact that driving behaviors of both driver categories were 
motivated only by the alternate realism of the simulator instead of the true nature of 
their driving behaviors, it raises further concerns on the validity of the methodological 
approach of our study. However, we counter argue the above aspect below. 

Although the performance of expert drivers’ was much better than novice drivers 
in the highway traffic track (T30), the order reversed in the racing tracks (T41 and 
T51). This indicates that experts have exhibited their true skills when the current 
situation is closer to their real world skillful activity rather than adapting to unfamiliar 
activities (see [28] for a discussion on expertise). However, according to the results in 
Table 3, the first driving session seems to have been more awkward to expert drivers 
than to novice drivers (both tension and negative affect were high) which can be 
interpreted as experts having more difficulties translating their skills to the new 
context. The findings are somewhat different with regards to the novice drivers as 
they have shown competence in their performance in the racing tracks. Moreover, 
results in Table 3 do not show much negativity, as did the experts in their first driving 
session or consecutive sessions. Therefore, it seems the novice drivers were 
intrinsically more adaptive to situations that could be labeled or understood as more 
fun for them. However, as the results show that their performance was not equal to 
that of expert drivers in the highway traffic track, we suspect that the highway traffic 
track came to act as a control to their mere performance oriented motivation while 
intertwining a learning challenge with it. As the findings related to both categories of 
drivers exhibit the potential of the highway traffic track to act as an effective training 
task, we can further assent in favor of driving simulator’s capability to enhance 
learning depending on the characteristics of the task rather than its fidelity. 

One of the major limitations of our study is that we could not find more 
homogenous groups what regards age. This has made us to select a group of teenagers 
as novice drivers. As a result, some of the aspects such as the dissemination of 
technology and perception about new digital media (see [37] for a discussion about 
the difference between digital natives and digital immigrant instructors) were 
different between the two driver groups. However, we do not see this as a big issue as 
the situation is very close to the real world. Apart from the above, we found that none 
of the other conditions such as the sources of disturbances had significant effects on 
the experimental conditions. 

The results in Table 3 and Table 4 were very helpful to verify our data analysis 
techniques as well as to contextualize the results. For instance, according to the results 
in Table 3 both tension and negative affect have opposite trends to positive affect, 
which is indeed the expected pattern of these variables. Moreover, Table 4 confirms 
the validity of the technique we used to analyze EEG data. For instance, both flow 
and tension had opposite effects compared to competence and positive affect which is 
also observable in Table 3. The flow seemed to be associated with focused 
concentration and learning (gamma band) while tension was identified as a state 
mediated by both flow and normal state of wakefulness (both gamma and beta bands). 
The literature to some extent confirms this result because flow makes one to forget 
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about time while being completely absorbed into an activity (see [38]). Moreover, the 
flow experience in a task is conditioned on certain factors such as a balance between 
the perceived challenge of a task and the perceived skills of the performer, and, 
therefore, it needs not to be exhibited in every situation especially in learning 
situations (see [39]). This relationship confirms the result that expert drivers 
experienced flow more than novice drivers and that there is a significant difference of 
how flow and tension have affected both driver groups. Moreover, Table 4 confirms 
our argument that the recommendations given by the drivers about using the simulator 
for driver training is unbiased because the results reveals that the variables about 
satisfaction of driving and reflection about skills improvement have been associated 
with different activation patterns of the brain than other iGEQ dimensions. 

6 Conclusions 

In this paper we compared the driving behaviors of expert drivers and novice drivers 
in a mid-range driving simulator with the intension of evaluating the validity of 
driving simulators for driver training. The results showed somewhat different driving 
behaviors of the two categories of drivers, that is, novice drivers were motivated 
towards performance oriented behavior whereas expert drivers performed well when 
the task became closer to their regular driving situation. Moreover, we were able to 
show that the learning effectiveness of simulations heavily depends on the 
characteristics of simulations rather than their fidelity. Other than the results we 
presented, we proposed a novel analytical framework for evaluating various aspects 
of driving behavior. 
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