Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

Home Smart Home: Approachable Interfaces for
Intelligibility, Modification, and End-User Programming.

Michaela R. Reisinger', Johann Schrammel', Stefan Suette', Peter Frohlich !

U AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna
{firstname.lastname } @ait.ac.at

Abstract. End-user programming concepts are increasingly employed in smart
home research to address the growing complexity of controlling smart home en-
vironments. Different approaches and visual styles of end-user programming
have been proposed and implemented within this context. Smart home control
does however not only necessitate end-user programming but also understanding
and modifying existing program structures. In this study, we compare three dif-
ferent approaches regarding their suitability for this application context with a
specific focus on intelligibility and modification performance. We conducted an
empirical study with 39 users performing three types of tasks (understanding,
configuring, and programming), using three different approaches for end-user
programming (form-filling, data-flow, and grid-canvas). The results of our study
found no significant differences regarding the intelligibility of the three different
implementations but clear differences in the subjective preference of users as well
as configuration and programming performance.

Keywords: End-User Programming, End-User Development, Smart Home,
Home Automation, Smart Environments, Rule-Based Processing, Trigger-Ac-
tion Programming.

1 Introduction & Related Work

Smart homes execute control over a multitude of devices. While this is only one of
several dimensions of a smart home [1, 2], creating approachable configuration inter-
faces is a central goal in smart home research [3], since it is residents rather than pro-
fessional programmers who are most suited to this task [4]. Programming can be seen
as an extension of direct manipulation, facilitating repeated actions and scheduling [5].
As such, programming (i.e. creating an abstraction of a task), must have a decidedly
better cost-benefit ratio compared to manual control [5]. This abstractive effort can be
eased using visual programming languages and employing metaphors, even though
they impact the language’s expressiveness, i.e. the number of relevant expressible con-
cepts, [6, 7], and its complexity, i.e. the number of available items [8].

226

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

1.1 End-User Programming Approaches for a Home Context

To reach the goal of an approachable interface, combinations of different techniques
including metaphors and programming styles have been proposed. While metaphors
employ real-world concepts without specific programming relevance (e.g. jigsaw, time-
lines, pipes, or rules), programming styles make use of specific programming interac-
tion paradigms (e.g. trigger-action, natural language, tangible, spreadsheet) [9].

Since end-user programming interfaces can use these metaphors and programming
styles in different ways, we additionally describe them by four principles: their struc-
ture, which can be pre-defined, like a form, or open, like an empty canvas, their devel-
opmental process, in which starting point and/or progression through the programming
steps is either open or fixed (determined either by the user or the system respectively),
the developmental logic, which can make explicit or implicit use of logic markers such
as if/then, and the item repository, which can be general (i.e. unchanging throughout
the programming experience) or position-based (i.e. different subsets of the repository
are shown at different stages of development). Repositories can furthermore use cate-
gories or user-input/search for browsing.

Investigating the home context and available end-user programming interfaces show
a prevalence of certain techniques employed in smart homes: Household tasks are com-
monly expressed as rules, following an if-then structure [3, 8, 10], therefore the trigger-
action paradigm is especially widespread in the home context [e.g. 11-14]. Yet, rule-
notions have been noted as difficult for non-programmers, especially with rising com-
plexity, because they necessitate the use of key concepts like Boolean operators and
operator priority [9]. Rule-based interfaces have also been shown to limit the user’s
creativity [3]: Users described feeling restricted by it and were less expressive using it.
Therefore, other approaches should continue to be considered, particularly their poten-
tial to amend the shortcomings of rule-based interfaces. Process-oriented notions en-
gage users to model more complex tasks than rule-based notions and facilitate expres-
siveness, but on the other hand lack clarity. Comparing existing approaches, repository
categorization, used terminology, developmental process, complexity and a low cut-off
for expressiveness have been shown to affect performance and perception [4, 6, 15—
17]. To more clearly contrast the effect of metaphors or programming styles them-
selves, controlling aspects that are merely properties of their implementation (and do
not define the underlying approach) such as styling, terminology, complexity and ex-
pressiveness seems warranted.

Previous research has already sought to address common issues, such as intelligibil-
ity and appeal for end-users by guiding users through the programming experience by
separating rule parts [11], visualizing differences between trigger-action programs [18]
and recommending rules through algorithms [19]. Since these approaches have not yet
been tested with the anticipated complexity of a real-life home, it is still open whether
they address the issues most difficult for end-users. Therefore, programming for smart
homes has still to be investigated at higher complexity levels and different approaches
tested to this point. Since previous studies have also shown that programming can make
use of one metaphor while debugging can successfully make use of another [20], dif-
ferent approaches might be used according to the task at hand. In the following, we
therefore outline code modification and readability as important tasks that complement
the classical task of programming.

227

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

1.2 Code modification and readability

In the context of end-user programming for smart home control, the modification of
existing ‘code’ is a very common situation that should be supported accordingly. Mod-
ifying existing behaviors is part of one of six design principles for smart home control
[17]. Furthermore, code readability has also not yet received much attention concerning
the impact of different approaches to end-user programming, though it has been iden-
tified as an important aspect of end-user programming [21, 22]. Code readability is a
pre-requisite for successful code modification as well as a common theme in program-
ming research [e.g. 23-25]. Understandability and readability of code are especially
important in our targeted context due to the following three aspects: First, smart home
controls are typically installed with default programs and configurations [26, 27]. To
be able to use the system successfully and implement modifications the end-user pro-
grammer needs to be able to understand the pre-existing code structure. Second, smart
home controls typically are used by multiple users (i.e. different members of the house-
hold) [28] and therefore understanding code others have changed last is typical. Third,
changes also might be made only very seldom and after longer times as practices in the
home are relatively stable. Typical triggers might be holidays or the start of the heating
season, and people will have to understand code they made some time ago. Therefore,
comparing end-user programming approaches should include code modification and
intelligibility tasks just as much as programming tasks.

2 Research Questions

With our work, we compare three different approaches to end-user programming, form-
filling, data-flow and grid-canvas (see section 3.2), regarding their usefulness and un-
derstandability for end-users. Specifically, we address the following research questions:
(1) Are there differences in the intelligibility of pre-existing end-user programs for three
different interfaces, and if, what are the underlying reasons and elements causing these
differences? (2) Which interface style allows end-users to perform the best regarding
both programming/modification time and error rate, and how can the observed differ-
ence be explained? (3) Are there any typical errors associated with a specific interface
style, and how can these be avoided? (4) What is the subjective satisfaction of end-user-
programmers with the different interface approaches, and how could the different ap-
proaches be improved to better support them and increase satisfaction?

3 Method

3.1 Participants

20 women and 19 men participated in the study. They were between 22 and 71 years of
age (M =41.15). They indicated basic to extensive computer knowledge (M = 5.02 on

228

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

a scale from 1 basic to 7 extensive) and were regular computer users (34 daily, 5 mul-
tiple times a week). Only few individuals were regularly concerned with programming:
24 did never do any programming at all, while ten, two and four individuals pro-
grammed multiple times a year, month, and week respectively, and one daily. 31 par-
ticipants had never used smart home functionalities while as smaller number did so
regularly (1, 1, 3, 3 multiple times per year, month, week, and daily respectively). Con-
sequently, participants reported their smart home knowledge from non-existent to ad-
vanced (M = 3, on a scale from 1 none to 7 extensive).

3.2 Prototypes

This study used three prototypes (Fig. 1) to configure and program smart home rules
by defining triggers and subsequent actions. According to the classification in [9], all
prototypes employ a rule-metaphor while using different visualizations. Two of the
used prototypes, form-filling and data-flow, are based on a previous study [4]. We em-
ployed prototypes instead of available tools in order to control for aspects highlighted
in previous comparisons (see section 1.1): All three used the same vocabulary, the same
repository size, the same color-coding and were of the same complexity (70 items
each). The cut-off for expressivity was high in all prototypes and was not reached by
any participant.

Form-filling is a prototype with a pre-defined structure, fixed starting point, open
order, and explicit logic markers. Any drop-down choice is automatically followed by
necessary specification fields. Due to its position-based repository, some items are only
available either in trigger or action drop-downs (e.g. someone) and as a specification to
appropriate objects (e.g. the alarm system can be active while the window cannot).
Form-filling is closest to natural language use in defining rules.

Data-flow represents a more graphical, tangible approach by featuring an open canvas
with a general, categorized repository. Categories are locations, objects, conditions,
actions, individuals, events, time and logic. Data-flow uses explicit logic markers, in
contrast to its first version [4]. The developmental process is open.

Grid-canvas is a prototype containing a segmented canvas and a general, categorized
repository using the same categories as data-flow (except “logic”, since these objects
were embedded in the canvas). The canvas is parted in two sides (if/then) which hold
containers for item and specification placement. It has explicit logic markers. Boolean
operators are chosen via drop-down between containers and automatically appear when
a new container is created. Like the other prototypes, it features an open starting point
and an open order. Regarding visual programming representations, it could be classed
as a visual, drag-and-drop variant of form-filling. The motivation for this prototype is
based on a previous study [4, 16], which showed that designated if/then layers and
embedding of operators could improve an open canvas approach, especially regarding
the connection completion rates.

229

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

Wenn ‘der Windmelder & ‘aktiv ist v B
+ @
; . z . ®
X ‘und wenn N ‘eln Fenster - in der Wohnung -~ gedffnet ist N
@
= 2 - - ®
X oder wenn N ‘dle Jalousie - ‘ln der Wohnung - geschlossen ist N
+
x [dann eine Nachricht senden
+
<bitte wahlen> ~

Orte
Objekte
Zustande
Aktionen

Personen

Ereignis

Zeit
Logik

Orte Wenn... dann...
-_Zustéinde
= und V‘ @
+
Personen [Fensterlin Wohnung] :
oder | ?

Zeit

L X

Fig. 1. An example of a rule (intelligibility task 2) in all three prototypes. It reads “If | [the] wind
sensor | [is] active, | and [if either] | [a] window | in the flat | is open, | or [if] | [any] blind | in the
flat | is closed | then | send [a] message”. Form-filling (top). Symbols of the left add/remove
whole lines, while symbols right to the rule connect if-pairs to define line grouping (open/closed
chain) and thus trigger hierarchy. Every rule starts with if/when (Wenn), followed by a trigger-
item dropdown. Subsequent lines start with a Boolean operator. Drop-down menus are shown,
and their content adjusted according to the selection. In this program, the first trigger condition
is made up by a trigger and its specification, while the subsequent two are followed by two spec-
ifications. The action drop-down in this rule does not have a specification field. Data-flow (cen-
ter). The repository (left) holds categories of items which expand on click. Items can be dragged
and dropped freely on the canvas. Connections are only possible between correct connectors (e.g.
arrow-tip to arrow-bottom) and can be dissolved with left-click. Rules start with an if/when which
can be connected to any trigger. Locations are connected to items via their top-notch, while other
specifications (e.g. active) are added in the data flow, before Boolean operators. Trigger hierar-
chies are represented by the order in which the operators are connected. Grid-canvas (bottom).
Items are dragged and dropped from a repository (left) into containers on either side (if/then) of
the canvas. Containers can be added with the bottom “+”, which also adds logic connectors be-
tween them (dropdown and, for triggers, chain-link). Each container can only hold one item and
specifications available for that item.

230

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

3.3 Tasks

Participants performed two intelligibility tasks, eight configuration tasks, and three pro-
gramming tasks per prototype. Three task sets were used, recreating the same structure
with different items of the same item types (e.g. using window instead of door, kitchen
instead of bedroom). Each task set was constructed to use items equal to other sets, and
whenever possible to choose items with the same number of specification slots. All
tasks can be found in Appendix A, while their structure is detailed below. Each set was
equally used with each prototype.

Intelligibility Tasks. As intelligibility tasks, participants were shown a finished rule
with six verbal statements (randomized order, Table 1) for each task. The statements
verbalized when the rule would be active and lead to the presented action. Participants
had to indicate which of the descriptions matched the rule (multiple choice). The
intelligibility tasks structurally matched the target configurations of configuration tasks
3 and 7, and programming tasks 2 and 3 respectively.

Configuration Tasks. Participants were given an initial configuration and a description
of the target configuration in eight configuration tasks (Table 2). The task order was set
from the least complex (C 1) to most complex (C 8).

Programming Tasks. In these tasks (Table 3), participants were instructed to create
programs from scratch in response to the target situation. The setup here was the same
as for the configuration tasks but without any initial configuration present.

Table 1. Intelligibility tasks. For the actual tasks, see Appendix A, Tables 1 and 2.

Task Rule Configuration® Correct Answer Structures Incorrect Answer Structures
Ti&T:— A Ti— A
11 Ti&T:— A T:&T1i— A TilT:—> A
AT &T2 Ti&Ta— A
Ti&T:— A T2 1 Ts— A
12 T & (T2 1T;) A T:&Ti— A T: & Ts— A
AT & (T21Ts) A—(Ti&T)IT;

T indicates a trigger, A an action, & a conjunction, | a disjunction

Table 2. Configuration tasks. For the actual tasks, see Appendix A, Table 3.

Task Initial Configuration® Target Configuration® Main task

Cl T-A T—A Substitute trigger

C2 T&T—A T—A Remove trigger

C3 T-A T&T—A Add conjunction and trigger

C4 T-—-A TIT->A Add disjunction and trigger

C5 T-A TIT>oA&A Add disjunction, trigger, and action
C6 T&(T&T) —A TI(T&T)— A Change conjunction to disjunction
C17 (T&TIT—A T&(TIT)— A Change trigger hierarchy

C8 TITH>A&A TIT>A&A—A Addaction with time delay

T indicates a trigger, A an action, & a conjunction, | a disjunction

231

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

Table 3. Programming tasks & task matching. For the actual tasks, see Appendix A, Table 4.

Task Target Rule * Matching Intelligibility Tasks Matching Configuration Targets
P1 T—A cl/C2

P2 T&T— A 11 C3

P3 T&(TIT)— A 12 C7

T indicates a trigger, A an action, & a conjunction, | a disjunction

Procedure and Measures

The order of the prototypes and task sets alternated between participants. They were
given a brief explanation of the smart home context and programming for the home,
then immediately started their first prototype session with the intelligibility task. We
deliberately set the intelligibility tasks before the tutorial to gain insight into a proto-
type’s intelligibility before exposure. They were then introduced to the prototype func-
tions with a tutorial, which they could review at any time during the session. They
proceeded with all eight configuration and three programming tasks. After each task,
they rated the difficulty of understanding the task description (Perceived Task Compre-
hension Difficulty), the difficulty of configuring/programming it with the prototype
(Perceived Configuration/Programming Difficulty) and their perceived success of do-
ing so (Perceived Success) on a 7-point scale. After the last programming task, partic-
ipants answered the User Experience Questionnaire (UEQ, [29]) for the current proto-
type and started with the next. The prototypes recoded the time from starting a task
until participants indicated their program to be completed (Task completion time).

An Intelligibility Score was calculated by subtracting false from correct choices (cut-
off at 0) and dividing by the number of total correct answers. Configuration and Pro-
gramming were scored by analyzing participants' final programs according to the use
of correct items (e.g. window, is open), and whether they connected them correctly (e.g.
window to is open). Scores were calculated by subtracting incorrect from correct items,
divided by total items necessary for the task. As in [4], participants could create longer
or more elaborate programs without penalty, as long as the derived function was the
same. In that case, the total item and connection count was adapted to their solution.

4 Results

4.1 Intelligibility

An ANOVA with mean intelligibility scores as dependent variable and the three inter-
faces as independent variables did not find significant differences in intelligibility
(F276=0.027, p=0.973). On average, participants selected two correct options (1.95,
2.10, 2.04 for form-filling, data-flow and grid-canvas) while selecting less than one
incorrect one (0.40, 0.51, and 0.55 respectively). Intelligibility scores were distinctly
different for the two different tasks (Table 4), implying that they indeed were different
in their complexity and difficulty to comprehend as intended in the test design.

232

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

Correct answers were identified in similar ratios for the three prototypes (Fig. 2).
Switching conjunctive triggers in the first intelligibility task (I1) was identified as cor-
rect slightly more often in the grid-canvas prototype, while the scenario combining the
conjunctive and second disjunctive trigger (second intelligibility task, 12) was found
correct less often in the form-filling prototype. Incorrect answers were chosen more
diversely: That one trigger alone would suffice for intelligibility task 1 appeared correct
to more participants in data-flow and grid canvas than in form-filling. That the action
would lead to the trigger (reversal of rule) was, on the other hand, thought to be correct
more often in form-filling and grid-canvas than in data-flow. For the second intelligi-
bility task, participants chose the option that either of the disjunctive items would trig-
ger the action without the conjunctive item more often in data-flow, while they accepted
achange in trigger hierarchy more often in grid-canvas than in the other two prototypes.

4.2 Configuration & Programming

Configuration. As described in 3.3 Procedure and Measures, several measures were
used to characterize the performance with and assessments of the different approaches.
Results were analyzed using repeated-measures analysis of variance (ANOVA), with
Bonferroni-corrected p-values to compensate for multiple application of the statistical

Table 4. Intelligibility scores as ratio %.

Task Form-Filling Data-Flow Grid-Canvas Total
I1 70.09 69.23 67.52 68.95
12 38.46 41.88 42.74 41.03
Total 54.27 55.56 55.13

40%

30%

e
“ Ba —am Bm |]

T—A T1|T2 TI&TZ T2|T3 Tz&T3 A(—(Tl&

Incorrect
Answers

— A —A — A — A T,)1Ts
100%
wn 80%

0 =
o&) g 60%
S & 40%
C< 2%
0%
Tl&Tz Tz&Tl Tl&Tz T3&T1 A(—Tl
— A — A Tl&Tz — A — A (T, 1T3)
Intelligibility Task 1 Intelligibility Task 2

m Form-Filling mData-Flow Grid-Canvas

Fig. 2. Percentages of correct and incorrect answer choices in both intelligibility tasks.

233

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

testing. The assumption of sphericity was tested using Mauchly’s test, and Greenhouse-
Geisser correction of p-values was applied if required. The results of this analysis are
summarized in Table 5. For the configuration task, we found significant differences in
all measured dimensions except for comprehension difficulty. This is expected since the
task descriptions were not prototype-specific and should, therefore, be comprehended
equally. For the four other dimensions — task completion time, task completion rate,
perceived success and perceived programming difficulty — the descriptive values show
form-filling to perform best, closely followed by grid-canvas, and data-flow lagging
clearly behind on each of the different measures.

Programming. Analyzing programming performance and experience employed the
same procedure as the configuration task. A summary of the measurements and the
statistical analysis is provided in Table 6. Overall a similar pattern to the configuration
task can be observed, however, for programming only task completion time and
programming difficulty show a significant difference between the three prototypes.
Again, form-filling is fastest, while grid-canvas had the highest completion rate even
though participants found it more difficult to program. Data-flow is remarkably slower
and perceived as even more difficult.

Table 5. Configuration performance: descriptive measures for task completion time and rate,
perceived success, perceived comprehension difficulty and perceived configuration difficulty.

Mean (+ Standard Deviation) Repeated Measures -

Form-Filling Data-Flow Grid-Canvas ANOVA
Task Completion Time 75.66+49.47 130.0+1044 88.32+84.11 Fo=26.45 !
in seconds Pac;i<0.0001**
Task Completion Rate 0.922+0.157 0.87420.143 0.9150.160 Fare=5.801,
as ratio Paaj=0.0387*
Perceived Success 654220881 6.054+1.507 6.304=1250 F27=6.032,
7-Point Likert Scale Paaj=0.0365*
Comprehension Difficulty | 60320033 1.756+1.051 1.673:0.999 Faze=1.120,
7-Point Likert Scale Pai=1
Configuration Difficulty 2016£1444 2974x1851 2.093x1.385 Fae= 1262,

7-Point Likert Scale

Paai=0.0001%*

Table 6. Programming performance: descriptive measures for task completion time and rate,
perceived success, perceived comprehension difficulty and perceived programming difficulty.

Mean (+ Standard Deviation) Repeated Measures -

Form-Filling Data-Flow Grid-Canvas ANOVA
Task Completion Time 505243809 128.6£70.57 88.36£5047 F26=59.31
in seconds P2aj<0.0001*
Task Completion Rate 0.901+0.185 0.833+0.188 0.9110.181 Fa=4.953,
as ratio Paai=0.0753
Perceived Success 6.650£0.634 6265:1316 6.547+0.960 Fa7e=4.299,
7-Point Likert Scale Pagi=1
Comprehension Difficulty | 385.0717 147920714 1.5300.761 Fase=1.186,
7-Point Likert Scale Pagi=1
Programming Difficulty 1.598+1.182 2.538+1.774 18721454 Fa6=10.24,

7-Point Likert Scale

Paai=0.0012%%

! Analysis for this factor is based only on data from 34 participants Due to a technical problem
task completion times were not logged for the first 5 participants, therefore.

234

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

Performance & Complexity. To elucidate the impact of task complexity on
performance with either of the prototypes, we analyzed Total Completion Rate, Item
Completion Rate, and Connection Completion Rate per rule type (Table 7) [16]:

Mean total completion scores ranged from 80 to 99 percent in all three prototypes,
with data-flow having a slightly lower range than the other two prototypes (81-92% as
compared to 86-99% and 84-96% in form-filling and grid-canvas respectively). Form-
filling had the highest fotal completion rates for substituting a trigger (C1), adding a
disjunction and a trigger (C4), adding a disjunction, trigger and action (C5), and for
adding an action with a time delay (C8). It also had the highest completion rate for
programming the simplest task (P1). Data-flow meanwhile had the highest mean rozal
completion rate for removing a trigger (C2) and for changing the trigger hierarchy (C7).
Grid-canvas scored slightly higher than form-filling for adding a conjunctive trigger
(C3), and noticeably higher than both other prototypes for changing a conjunction to a
disjunction (C6) as well as for both remaining programming tasks (P2 and P3).

Mean item completion scores lay in similar ranges for all three prototypes (87-100%)
and were nearly always higher than connection scores (70-99%), showing errors to be
more frequent in the latter category. Differences between these means lay roughly be-
tween 0 and 20% for the form-filling and data-flow prototypes and between 0 and 10%
for the grid-canvas prototype. Since grid-canvas did not perform better overall, the
smaller range indicates that errors committed influences both item and connection com-

pletion jointly, while it influenced scores separately in the other prototypes.

Table 7. Total Completion Rates per Task.

Target rule structure

Total completion rate

(item completion, connection completion)

Form-Filling Data-Flow Grid-Canvas
ol Ton 94.87% 89.57% 8436%
(9744%.9231%) (94.02%.85.13%) (89.23%.79.49%)
C2 T 86.41% 91.15% 90.73%
(959%.76.92%) (91.28%.91.03%) (90%.9145%)
94.44% 83.24% 94.59%
C3 T&T—A (96.58%.92.31%) (92.66%.73.82%) (95.33%.93.85%)
Ca TIToA 98.75% 8341% 96.43%
(98.78%.98.72%) (91%.7582%) (96.63%,96.24%)
92.45% 80.67% 88.18%
C5 TIT-A&A (92.59%.9231%) (86.97%.7437%) (88.95%,87.41%)
89.44% 88.7% 94.64%
Cé6 TIT&T—A (97.86%.81.03%) (97.19%.8022%) (98.11%,91.17%)
86.88% 91.58% 94.03%
C7T T&(TITH—A (98.89%.74.87%) (99.53%,83.63%) (96.69%.91.38%)
94.08% 90.62% 89.22%
C8 TITHA&ASA 45330, 02800%) (9229%.88.96%) (90.82%. 87.61%)
b1 Ton 96.79% 88.89% 02.76%
(96.15%. 97 44%) (95.73%.82.05%) (93.21%,92.31%)
85.9% 80.68% 89.71%
P2 T&T—A (91.89%.7991%) (88.42%,72.93%) (90.18%,89.23%)
Py T&TIT) A 87.59% 80.36% 90.82%

(93.64%, 81.54%)

(90.92%, 69.8%)

(94.32%, 87.32%)

235

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

Further investigation shows grid-canvas connection errors being based on incorrect
connections between items (e.g. window and living room), while connection errors in
the other prototypes were mostly made between rule structures (e.g. between two trig-
gers). This is due to participants missing specifications more easily or placing them in
a separate container in grid-canvas and frequently placing Boolean operators between
triggers instead of at the end in data-flow. Meanwhile, trigger hierarchies were not un-
derstood well in either form-filling or grid-canvas. As anticipated, grid-canvas had bet-
ter connection completion rates then data-flow except for configuration tasks 1 and 8.
The former is due to the simplicity of the task, in which data-flow generally still per-
forms well, the latter because participants frequently placed the time-delay action be-
fore a not-delayed action.

Comparison of configuration and programming. While the target configuration of
tasks C1 and 2 corresponded to that of programming task 1, participants were more
successful programming this simple rule from scratch than modifying it — programming
had a 3% higher mean total completion score. Both other comparable tasks were
configured more successfully than programmed, with an advantage of 5% and 4.5%
(for tasks C3/P2 and C7/P3 respectively). Looking at the three prototypes (Fig. 3), we
see that using data-flow, programming was less successful than configuring — slightly
in the case of programming tasks 1 and 2, noticeably in programming task 3. In form-
filling, programming P1 and P3 was more successful than modifying their equivalents
C1/2 and C7, yet modification was more successful for C3, the equivalent of P2. In
grid-canvas, participants had greater success programming P1 than configuring C1/C2,
but higher scores for configuring C3 and C7 than for programming P2 and P3. The
score differences for C1/P1 in grid-canvas and C2/P1 in form-filling are unexpected,
indicating that substituting and removing a trigger might be more difficult in grid-
canvas and form-filling respectively. That C7 was completed less successfully than the
corresponding P3 in form-filling was likewise unexpected — participants might have
missed trigger hierarchy settings more easily when checking a configuration than when
programming. In grid-canvas, the difference between programming tasks 2/3 and their
modification equivalents was similar, while in data-flow the difference was greater for
C7 and P3 than for C3 and P2 — indicating that complexity affects programming more
than modifying with data-flow.

Clvs.P1 C2vs.P1 C3vs. P2 C7vs.P3
15%
10% o
B Form-Filling
5% I
0% - = [_ m Data-Flow
- .
5% Grid-Canvas
-10%
-15%
Fig. 3. Comparisons of total completion rates for configuration and programming tasks of iden-

tical target structures. Positive values indicate larger total completion scores in configuration than
in corresponding programming tasks, negative values vice versa.

236

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

User Experience. Nearly half of the participants ranked form-filling as their favorite
prototype, while only 21% and 31% did so for data-flow and grid-canvas. Grid-canvas
was chosen for second place by 56%, while data-flow placed last for 69% of
participants. Regarding scores from the User Experience Questionnaire (Fig. 4), form-
filling and grid-canvas were experienced more similarly than data-flow. They both had
higher attractiveness, perspicuity, efficiency and dependability scores than data-flow,
which scored higher on stimulation and novelty. Participants highlighted the simplicity
of form-filling and noted that it felt faster than other approaches, while also mentioning
that it was less easy to comprehend at a glance and in need of visual structuring. They
indicated data-flow to give a good overview, especially regarding its a central
repository and trigger hierarchies, as well as a greater sense of freedom, creativity, and
invitation. As such, they also noted that is too little structured to be functional, and too
time-intensive. They appreciated the split of the canvas in grid-canvas prototype with
its dedicated if/then layers, which combined a good overview with greater clarity, but
also noted the individual drag-and-drop as cumbersome, suggesting an automated
population of specification options once a main element was moved into a container.
Participants who had noted the existence of trigger hierarchy markers in form-filling
and grid-canvas also mentioned that they did not fully understand their impact.

W Form-Filling m Data-Flow Grid-Canvas
2,00
1,50

. {.1 il{ il{ il{ il
l | 1 '|' 1

-0,50
-1,00

Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty

Fig. 4. Mean scores of the User Experience Questionnaire with 95% Confidence Interval. Scores
ranged from -3 to 3 on each dimension.

5 Discussion

Within this study, we compared three different approaches to end-user programming in
a home context with regard to their usefulness and understandability. While the use of
prototypes poses its own limitations, especially regarding their maturity, it is currently
the only option to compare approaches that do not differ in complexity, cut-off for ex-
pressiveness, vocabulary, or visual polish.

237

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

Our study shows significant differences between prototypes, specifically in rask
completion time, rate, perceived success, and perceived configuration difficulty in the
configuration task, and in task completion time and perceived programming difficulty
in the programming task. Form-filling is shown to be faster for both modification and
programming, even though programming was slightly more successful using the grid-
canvas prototype. Participants had higher confidence in their solution in form-filling
and rated its use as slightly easier than grid-canvas. This indicates that grid-canvas
could benefit from guiding trigger selection (e.g. by automatically adding necessary
specification fields once the main trigger was chosen). The biggest difference is
however between these two prototypes and data-flow which was considerably slower,
had lower fask completion scores was perceived as more difficult and less successful.
However, it had advantages when removing a trigger and changing trigger hierarchies.
Grid-canvas out-performed the other prototypes in changing Boolean operator types
and programming all but the simplest rule from scratch. It is notable that the difference
between item and connection scores is lower in the grid-canvas prototype, showing that
errors committed influence both item and connection completion jointly. This indicates
that while the form-filling and data-flow prototypes need to improve their support of
forming connections (including choice of trigger hierarchies), grid-canvas would
benefit from supporting item choice. Specifically, this includes indicating items or
specifications missing from a container, enabling users to move entire containers and
visualizing that time delay impacts all following actions. Other prototype
improvements include greater support for trigger hierarchies in form-filling and grid-
canvas approaches and structural adjustment of data-flow regarding Boolean operator
placement (between triggers instead after them).

Regarding scores from the User Experience Questionnaire, differences between
form-filling and data-flow were in general much similar to the results in [4]: Form-
filling was rated as more attractive, perspicuous, efficient, and dependable but less stim-
ulating and less novel. Form-filling was even rated as less attractive and less novel in
this study then it did in [4]. There was a minor improvement of the data-flow prototype
in perspicuity, but slightly lower values for efficiency and dependability. The new grid-
canvas prototype was rated as attractive as form-filling and received slightly lower
scores in perspicuity, efficiency, dependability while scoring higher on stimulation and
novelty. Qualitative comments, for the most part, echoed these User Experience Ques-
tionnaire scores. It is especially interesting that participants mentioned feelings of free-
dom and restriction respectively regarding the data-flow and form-filling prototypes,
which is much in line with results in [3] and suggests an investigation of the role of
creativity and freedom in practical smart home appliances.

Apart from elucidating differences between end-user programming approaches, our
study also proposes three additions to Caivano et al.’s [17] ten design implications for
the creation of event-condition-action rules:

1. Facilitate rule intelligibility
Employing two different intelligibility tasks, we found no significant difference
between the prototypes, yet their generally low understandability shows that there
is a need to investigate how novices understand end-user approaches and to

238

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

develop methods with which to impart and measure understanding. Correct and
incorrect answer choices indicate strengths and weaknesses for each prototype re-
garding how well users understand which triggers are necessary, their order and
hierarchy as well as general rule direction, demonstrating the need to individually
consider these aspects in supporting systems.

Facilitate complex rules: trigger connections and hierarchies

As in a previous study [4, 16], the total completion rate did not simply decrease
with rule complexity, showing that is it is not the number of items but rather the
number of triggers and the complexity of their connections (conjunctions, disjunc-
tions as well as hierarchies) that impact configuration and programming perfor-
mance. Approaches that offer a guided configuration experience [e.g. 11] or vis-
ualize differences between program options [e.g. 18] show potential to signifi-
cantly ease this, but have yet to be tested with programs that use disjunctions and
trigger hierarchies. Visualizing differences between program options would addi-
tionally need to be embedded within the programming process to be used in this
manner.

Support modification additionally to programming from scratch

Our study shows that complexity influences programming and modifying with a
prototype differently. Comparable target rules show a slightly better total comple-
tion score for modifying instead of programming more complex rules from
scratch. This illustrates the importance of predefined patterns to modify by end-
users e.g. by supporting re-use [17] as well as of creating an interface that does
not merely lend itself to programming from scratch but also to modification.

Since individual preferences for analytical thinking or experiential engagement as well
as for visual and verbal processing could impact interface preferences [30, 31], future
work will also include such personal characteristics.

Acknowledgments. This research was performed within the SIM4BLOCKS project
(funded from the European Union’s Horizon 2020 research innovation program under
grant agreement No. 695965).

References

1.

3.

Reisinger M.R., Prost S., Schrammel J., Frohlich P.: User Requirements for the Design of
Smart Homes: Dimensions and Goals in Chatzigiannakis, I., De Ruyter, B., and Mavrommati,
I. (eds.) Ambient Intelligence. Lecture Notes in Computer Science, vol 11912. pp. 41-57.
Springer, Cham (2019)

Davidoff S., Lee M.K., Yiu C., Zimmerman J., Dey A K.: Principles of smart home control
in Dourish, P. and Friday, A. (eds.) UbiComp 2006. vol. 4206. pp. 19-34. Springer-Verlag
Berlin Heidelberg (2006)

Brich J., Walch M., Rietzler M., Weber M., Schaub F.: Exploring End User Programming
Needs in Home Automation ACM Trans. Comput. Interact., 24, pp. 1-35 (2017)

4. Reisinger M.R., Schrammel J., Frohlich P.: Visual languages for smart spaces: End-user

239

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

240

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

programming between data-flow and form-filling 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). pp. 165-169. IEEE (2017)

Rode J.A., Toye E., Blackwell A.: The fuzzy felt ethnography - understanding the
programming patterns of domestic appliances Pers. Ubiquitous Comput., 8, pp. 161-176
(2004)

Lucci G., Paternd F.. Understanding End-User Development of Context-Dependent
Applications in Smartphones 5th IFIP WG 13.2 International Conference of Human-
Centered Software Engineering - HCSE 2014. vol. 8742. pp. 182-198 (2014)

Lucci G., Paterno F.: Analysing How Users Prefer to Model Contextual Event-Action
Behaviours in Their Smartphones 5th International Symposium on End-User Development,
IS-EUD 2015. vol. 9083. pp. 186-191 (2015)

Ur B., McManus E., Pak Yong Ho M., Littman M.L.: Practical trigger-action programming
in the smart home Proc. 32nd Annu. ACM Conf. Hum. factors Comput. Syst. - CHI "14, pp.
803-812 (2014)

Paterno F., Santoro C.: New Perspectives in End-User Development pp. 43-59 (2017)

. Dey AK., Sohn T., Streng S., Kodama J.: iCAP: Interactive Prototyping of Context-Aware

Applications 4th International Conference, PERVASIVE 2006. vol. 3968 LNCS. pp. 254—
271 (2006)

Fogli D., Peroni M., Stefini C.: ImnAtHome: Making trigger-action programming easy and
funJ. Vis. Lang. Comput., 42, pp. 60-75 (2017)

. Ur B., Pak M., Ho Y., Brawner S., Lee J., Mennicken S., Picard N., Schulze D., Littman

M.L.: Trigger-Action Programming in the Wild : An Analysis of 200 , 000 IFTTT Recipes
Proc. SIGCHI Conf. Hum. Factors Comput. Syst., pp. 3227-3231 (2016)

De Russis L., Corno F.: HomeRules CHI EA °15 - Proceedings of the 33rd Annual ACM
Conference Extended Abstracts on Human Factors in Computing Systems. pp. 2109-2114.
ACM Press, New York, New York, USA (2015)

Cabitza F., Fogli D., Lanzilotti R., Piccinno A.: Rule-based tools for the configuration of
ambient intelligence systems: a comparative user study Multimed. Tools Appl., 76, pp. 5221—
5241 (2017)

Cabitza F., Fogli D., Lanzilotti R., Piccinno A.. End-User Development in Ambient
Intelligence : a User Study CHItaly 2015 Proceedings of the 11th Biannual Conference on
Italian SIGCHI. pp. 146-153 (2015)

Reisinger M.R., Schrammel J., Frohlich P.: Visual end-user programming in smart homes:
Complexity and performance 2017 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). pp. 331-332. IEEE (2017)

Caivano D., Fogli D., Lanzilotti R., Piccinno A., Cassano F.: Supporting end users to control
their smart home: design implications from a literature review and an empirical investigation
J. Syst. Softw., 144, pp. 295-313 (2018)

Zhao V., Zhang L., Wang B., Lu S., Ur B.: Visualizing Differences to Improve End-User
Understanding of Trigger-Action Programs pp. 1-10 (2020)

Corno F., Russis L.D.E., Roffarello A.M.: RecRules : Recommending IF-THEN Rules for
End-User Development 10, (2019)

Corno F., De Russis L., Monge Roffarello A.: My IoT Puzzle: Debugging IF-THEN Rules
Through the Jigsaw Metaphor Presented at the (2019)

Dahl Y., Svendsen R.-M.: End-User Composition Interfaces for Smart Environments: A
Preliminary Study of Usability Factors 1st International Conference on Design, User
Experience and Usability, DUXU 2011, Held as Part of HCI International 2011. vol. 6770.
pp. 118-127 (2011)

Wiedenbeck S., Engebretson A.: Comprehension strategies of end-user programmers in an
event-driven application Proc. - 2004 IEEE Symp. Vis. Lang. Hum. Centric Comput., pp.
207-214 (2004)

Collar E., Valerdi R.: Role of Software Readability on Software Development Cost Proc.

24.

25.

26.

217.

28.

29.

30.

31.

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

21st Forum COCOMO Softw. Cost Model., (2006)

Lee T.,Lee J.B., In H.P.: A study of different coding styles affecting code readability Int. J.
Softw. Eng. its Appl., 7, pp. 413422 (2013)

Relf P.A.: Achieving Software Quality through Source Code Readability Qualcon 2004
(2004)

Jahnke J .H., D’Entremont M., Stier J.: Facilitating the programming of the smart home IEEE
Wirel. Commun., (2002)

Abdallah R., Xu L., Shi W.: Lessons and experiences of a DIY smart home Proceedings of
the Workshop on Smart Internet of Things - SmartloT *17. pp. 1-6. ACM Press, New York,
New York, USA (2017)

Davidoff S., Lee M., Zimmerman J., Dey A.: Socially-aware requirements for a smart home
IE *06 - Proceedings of the international symposium on intelligent environments. pp. 41-44.
Citeseer (2006)

Laugwitz B., Held T., Schrepp M.: Construction and Evaluation of a User Experience
Questionnaire HCI Usability Educ. Work, pp. 63-76 (2008)

Mancy R., Reid N.: Aspects of cognitive style and programming 16th Work. Psychol.
Program. Interes. Gr., pp. 1-9 (2004)

Lee J.: The effects of visual metaphor and cognitive style for mental modeling in a
hypermedia-based environment Interact. Comput., 19, pp. 614-629 (2007)

241

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

swip

uayoIry ay} ur YSI[9y} ‘U0 SI JuUIYorW
99JJ02 9y} pue SSuLI [[2GI00P Y3 Y10q J]
‘sSunx

[1°q100p 9y} popraoid ‘swip uaydnry oy}
ur JyS1[9y} ‘UO ST AUIYORW 9JJOO Y} J]
"SWIp Sy

oy} ur JySI[2y} ‘SSULL [[2GI00p Y JI

9SO[0 UAYDILY Y} UI SpUI[q
oy} ‘o St WSI ueydy Ay pue
P3ISO[O SI JOOP UYL Ay} yioq JI
*P3sO[d ST I00pP UYL Y} PIPIA
-01d 9S00 [[1A USYDITY Y} U SPUI[q
o) ‘JJo ST Uy oy} Ul JYSI[oY) I
*3S0[0 USYIIIY Y} U SpUI[q

ay) ‘paso[d SI JOOp UYL Ay} I

JJO pawIn) ST WOOI SUIAL|

AU} UI AL Y} ‘UO ST Wa)sAs wieye
oy} pue Jjo ST UeTT-A\ 9 430q JI
*JJO ST URT-A\ 943 Jey) papraoid
‘JJO pawImy ST WwooI SUTAI[Y} Ul
AL 93U} ‘UO ST WAISAS wuIere ay) J
*JJO PAYIIIMS ST WOOI SUIAL]

S UL AL 941 ‘JJO ST UBT-M 341 JI

€ 19SSk,

7 19SSk,

[RES AT

X V<—d®'L

X V< IL®LL H
V< IL

Pouo) ,AINNINS IMSUy Se],

*$19s ysey Jod suondo pue aronys Jomsuy sysel AqiSe] 7'V dqel.

uos .
(wrem ‘wool JurAl]) JYSI] «— a8essowl «— (PIsO[o ‘awoy) spul[q _Mﬂumw (puas) aessow «— (uado ‘awioy) mop a\
(urex | Sumyas uns) 29 (UO ‘WOOI SUIAI) WYSIIT ‘OWOY) MOPUIM) 29 (JATIOR) 010D PUIM -Utm | (0) JAHIpIUING) 39 (UO) UOBEHUIA
(turp “uayy) WYSI] (950[0 ‘UaYIANLY) SpUI[q «— (330 ‘wooI SUIAI) AL
(uo) auryorw 931J09 29 (sJuL) [[9gI00 (33O ‘UaydY) WYSI[29 (PIsO[O ‘uayMNLy) 00 (uo) woIsAs uLrele 29 (JJo) ue-p\ I
€ 19sy[se], uoneIn3yuo)) o[y 7 19SSk [, uoneIn3uo)) a[ny 1 19SSk [, uoneInsyuo)) a[ny ysel,

"398 ysey 1od suoneinSyuo)) :syse} ANIqISIU] 'V dqeL,

-o3en3ue[yoeo ur A3uo

-IOJJIp Passardxa oq JYSTW SAINJLIJ SWOS “OSTMANIT “JUSAD Y} 10 ffo/uo paung s1 JUIsn o[IYm ‘UOTIIPUOD JO 318} Y} 10 ffo/uo s1 uisn Aq
UOTJR[SURI) Q) UI PAYOIWIW ST SIY) — 9[qeysinSunsip A[1ses aiow A[[eonsmsul] aJe SUORIPUOD PUB SIUSAF "UBWIOL) UI PAIBNJUSIQJIP 10U Ik
uaym pue fi ‘ojdwrexa 104 *1x9) eurStio oy} ur Juasaid jou sorourdaIdsIp 20NpoIULT UBD UOTIR[SULI) JBY) 910U 9sed[d “Joyine) £q paje[suel],

$19GQ yse L, ;v xipuaddy

242

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

uonoun(sip e | ‘uonounfuod e 29 ‘uonoe ue y ‘193311 © SAILIIpUL I,

-Zururel s1 31 9sned9q 10 ‘Sun

-19S SI UNS 9Y) pue Uo SI JYSI[WooI SUIAL]
AU} YIS 9SNBOq ‘WiIem 0} dinjeroduwo)
10709 SII sa3ueyd I WOooI JUIAI] Y],
-Sururesr st 31 10 ‘3un)as SI uns

QU3 IYIIS pue UO SI JYSI| WOOoI SUIAT] 3y}
asnedeq wem 0) arnjeraduwe) 10100 Sy
PpaSueyd sey wool SUIAI] 9y} ur Jy31[Y[,
‘wrem 0) drnjerad

-9} JO[09 S sa3ueyd YSI[Wool JUIAI]
oy “Sururer st 31 pue Suras SI uns oy J
‘wrem 0} arnjeroduwid) J0[od S)1 saSueyd
1yS wool SUIAI] Y} ‘U0 PAYIIMS SI
Y31 wool JuIAl] 9y} pue Jururer sI 1 J
‘wrem 0} aInjerodwad) J0[0d i

sagueyo Y31 wool JurAl] oy} ‘Surpas s1
uns 9y) pue uo st JyS1| woox SurAr] Y3 J
‘wreM 0} dnyerad

-} JOJ09 S sa3ueyd YSI[Wool JUIAI]
oy ‘Sururer st 31 Jo Sumes ST uns Ay} JJ
“pawip

ST Y1 USYIITY Ay} ASNBIAQ UO AIB JUIYD
-BW 99JJOO 9y} pue SSuLl [[9qI00p Y],
‘s3ull [[oq

-IOOp 9Y} PUE UO SI QUIYOBW 39JJOO Y}
9sNeOeq SWIP UayoIy 9y ur S| YL,

“SWIP UYL 9y} Ut JYSI[Y} ‘UO ST dUIYD
-BW 99JJ00 Ay} IO sTulr [[2gI00p Y} I

"Paso[d
st juountede oy} UI PUI[q B 9SNEOq
10 ‘uado st jusunede oy ur mopuim
B PUB QAT)OR SI JOJO9JOP puImM oy}
IOUJIO 9SNEBOdq Juds SI afessowl Y

"pasopo st juaunede oy ur purjq

e J0 uado st juswtede ay) ur mop
-UIM B JOUJIO PUB JATIOR SI J0J0930p
PUIM 9} 9SNBIQ JUIS SI 9FeSSoUW
“JUdS ST 9FeSSAW © “PIso[d

st juowirede ay) ur purjq € pue uado
st juowirede oyl ur mopuim e Jj
“Juas st oFessow

B “OATIOR SI J0JO9)0p PUIM 9U) pue
Ppaso[o st juauntede oyy ur purq e J
“Juas st oFessow

e ‘uado s1 juownrede ay) ur mopuim
B PUB 9ATIOR SI JOJOJ)JIP puim oy} JI
"JUIS ST 9FeSSAW © “PIso[d

st jJuowtede oy ur purjq e 10 uado
st juowirede oyl ur mopuim e Jj
PISO[0 dI8 UYOILY 9y} Ul SpuI[q

JU}) 9sNedaq Paso[d IOOp UYL
o) pue ‘o St YSI UYL AL
"Paso[d SI J00p UYL Y}

pue ‘3Jo St Y31 uoydMIy dY) ISned
-2 9SO[5 UL o) UI SpU[q Sy [,
*9SO[0 UYL AU} UI SPUI[q Y}

‘JJO PaYONMS ST IYSI[UYL dY) 10
PISO[O SI JOOP UYL oY} JOYId JT

"UO SI JQIJIPIWNY Y} 9SNed
-9q 1O ‘U0 SI UOTIB[IJUIA Y} pue
uado stjuowirede oY) ur MOPUIM B
JOUJIO 9SNBd3q JUSS SI dTessow Y

"UO Sem JQIJIPIW
-ny 9y} JO UONEB[NUIA Y} YD
pue uado st juowirede ay) ur mop
-UIM B 9SNBOIq JUIS ST 9Fessowl

"Jus ST 9SeSSowW € ‘uo I8
Jolyipiuuny pue Uone[HuoA 3y} J|
“Juas st oFessow

e ‘uado st juowirede ay) ur mMop
-UIM B PUB UO SI JOIJIpruiny ay) J
“Juas st oFessow

® ‘U0 SI uone[muaA ayj pue uado
st juowede oy) ur mopumm e Jy

"Juas st ofessow € ‘uo

SI JOIJIpIuNy JO UOLB[IIUSA Y} J]
"JJO PYOIIMS ST WOOI SUIAT] oy}
Ul AL 9U}) 9snedaq Uo SI WISAS
we[e 9y} pue ‘Jjo SI UBT-A\ YL
"JJO SI UBT-AA SU} PUB UO ST W}
-s£s wIe[e 9y} 9sNedaq JJO pauIn}
SI wool SuIAll 9y} Ul AJ, 9YL
"JJO pawIng St wool SurAl]

AU} UL AT, 9Y} ‘UO ST WIISAS WiIee
oy} IO JJO ST UBT-A\ 9y} Joyiio J]

X

ELICL® L) —V

CLITD®'L—V

V< EiL® L 4!

V< IL®EL

V—d® 'L

V < fLI4L

V—ouULy L

AUR'L—V

V<<dll'L

€ 19SSk,

7 19SSk,

[RES AT

102110D)

L 2INJONIS I9MSUY YSe,

243

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

"Juas 9q pnoys a3essowr
B ‘U0 SI UBT-A\ 9U) PUB JJO ST WOISAS WLIB[E 9} Y10q IO JJO SI J0JOJop OWS Y} J]

(puas) a5essow «— (uo)
ueT-A\ 2 (JJO) WolsAs wirele 29 (JJO) J03091op ows

"3JO pauin} 9q p[noys IafIpruny oy (J30 wIny) JoyIprIINY «— 99
DY) ‘U0 ST UONB[NUA) pue YSIY SI [2AJ] ZOD Y3 Y10q I 10 ySiy st Apruny) J (u0) uone[nueA % (YSiy) 20D % (YSiy) Anpruny
*1005 0} AFurYO PINOYS UIYIILY Y} UT JO[0D WYSTI] Y} pue Jjo uIny (170 UIN) UONE[HUAA — (UO) JOIPIIN
PINOYS UONB[NUA) ‘UaYdIy oy} ur pauado a1e spurq Y3 Jo uo SI IIprany aY) Jj e Rl
“UO UIN) P[NOYS WOOI SUIAI[Y} UI A J, PUB URTT-A\)) .
‘woo1 FurAl] ay) ur pauado aIe spurq Y3 JO U0 PAUIN} ST WOOI JUTAI] a4} UT IY3I[oy I (U0 i) UeJ-py < (UO PaUIMy ST WOOX SUIAI IYEIT ¢ O
"pauado aq p[noys WooI SUIAL] Sy Ut SpUL[q) (330 uny) soyyrpruuny «— (uado ‘woo1 Juraly) 100
pue JJo uIn} p[noys Jaipruuny 9y} ‘uado ST wooI SUTAT] Y} UT MOPUIM JO JOOP 34} J] A o
. ueunede (uado ‘awoy) spur[q < (A1) J0JIOP PUIA
2mu? a2y ur uado prnoys spur(q Y} ‘9ANIE SI 10J0)P YOS JO J0JOAIP puIm) JT
*JJO YOJIMS P[NOYS UOTIB[TIUIA) ‘MO[ST AJIpIuiny Jo [9AJ] 0D a4 J] (330 uIny) UONRINUAA «— (MO]) 20D v
"JU9s 9q P[NOYS AFLSSIW B ‘QAIIOR ST WIISAS ULIR[E 9} JO I0JI)P OWS) J] (puas) 93essawl «— (QAIIOR) J0JOIIP OWS
“UO UIN) P[NOYS WOOoIPAq Y} UI JYSI| aY) ‘dWoy Je We | pue SFULI JOO0[d WIe[e) J (uo wIn) ‘wooIpaq) WYSI[«— 0[O WIe[y
patttip 24 (wrp ‘woox JurAl) SI[«— (Sumes) ung ¢ D
PInoys woox JurAr] ay) ur 3y31| ay) ‘yuownrede oy ur st Apoqou pue Juryas SI uns) J
*UO UIn} p[noys WOoOoIdUe Y} Ul JYSI] Y} ‘dwWOoy Je SI UOWOS pue SIULI [[99100p Y} J (uo uIn) ‘wooIdue) SIYSI| «— [[9qI00
*}JO pauwIn} 9q p[noys Wool JUIAl] dy} ut 3 ‘woox JurAl] ay) ur st Apoqou (J§O tim ‘W0 BUIAL) AL «—
HOP } 24 pInod IO UEAL W IALL 9 UL SEAPOQOU I (woo1 JurAl]) Apoqou 29 (Paso[d ‘wool SUIAL]) spuljg
. . (uo wIn} ‘WooIYILq) OIS «—
UO PauIN] 9q PINOYS WOOIYIeq AY) U 0213)S AY) ‘WOOIYIeq U} Ul We | J (WO DO §F “WOOTYIEQ) TSI % (WOOIIEQ) | 4o}
. . (UO wIny ‘udYIIIY) OIS «—
UO PIuIN) 3¢ P[NOYS UAYIIY) UI 0AI)S) ‘UYL) UI ST JUOIWOS J| (DRI “UIYHILY) SPUTIQ 3 (USTDIEY) SUOAOG
“W)SAS WIee 9y} UO UIn) ‘dWoy Je ST Apoqou J| (uo uIny) waIsAs wrele «<— (0Q:81-0¢:L) dWI],
“JoyIpIuny Y3 uo winj ‘dwoy 18 We | Jj (uo um) soyrpruny «— (00:€-00:81) dWLL [D
"UBT- A\ U3 UO WIN) ‘WOOI SUTAI] Y} UI ST JUOAWOS J] (uo wim) ue -p\ < (0€:81) Qwi],
uonoNIsu] uoneIn3yuo)) Ja3Ie], . UONRINSIJUOD) [eNIu] YSe],

*$198 sk 921y} [[e Jo suonduosap uoneIinSiyuod 1051e) pue [enIu] :SYse, uoneinSyuo)) ‘€' V qe,

244

Interaction Design and Architecture(s) Journal - IXD&A, N 45,2020, pp. 226 - 245

uonoun(sip e | ‘uonounfuod e 29 ‘uonoe ue y ‘193311 © SAILIIpUL I, ',

"UO UIN} P[NOYS JOYBW 390 Y} “UO ST UYL dY) UL A], JO 02I9)S 9} JOYIId PUB UYOILY) UI ST QUOWOS J|
*UO WIN} P[NOYS UBT-AA U} ‘UO PauIn) ST WOOI SUIAT] U} UI WIISAS 0913)S 10 A I, U} IO pue dWOY 8 We | J] V—@LIL®L ¢d
*UO UIN} P[NOYS UOTIB[IUSA Y] ‘PISO[O ST WOOIYIeq dY) Ul MOPUIM JO JOOP Y} JOUIIS pue WOOIYJeq Y} Ul ST Apoqou J|
*1009 0} 93uBYO PNOYS USYIILY Y} UI JO[0D JYSI[9y} ‘UYL dY) UI ST QUOSWIOS PUB SUTLI JI J]
"UO WIN} P[NOYS WOO0IPAq dY) UT 09I3)S Y} ‘WI00IPAq dY) UI We | pue STULI JO0[0 WIe[e Y3 JT V1%L 7d
*9S0[0 P[NOYS WOOI SUIAL] 9Y) UI SPUI[q S} ‘W00 SUIAT] U} UI ST Apoqou pue Sunjas sI uns ayj J
*SUIUOnIPUOD J18 Y} UO UIN) ‘WOOI SUIAT] Y3 UT W] JT

*JJO UIn} PInoys dUIYORW 390 Y} ‘UYDIIY 9y} Ul ST Apoqou J| VvV — L Id
“WOISAS WIB[E 9Y) JJO UIN) ‘9WIOY J& ST JUOAWOS J]
uononisu] uoneInSyuo)) 3o5Ie], L 9INY 1951B], YSel,

"$19S Y[SB} 99IY} [[€ JO UOTIONIISUI UOTBINSIFUOD pue saInjoni)s o[ni Jagie], :syse], SuruweiSold 'V dqeL

"UO UIN} P[NOYS WI)SAS

WIR[e 9y} SAINUIW G I9)Y “JJO pawIn} 9q pinoys sySI| [[e pue D8] O3 39S 9q p[noys
Suneay oy} ‘ Aeme $I0JoW ()OS UBY) IOW W | JO passaid ST 90uBIUS oY) I8 YoyMS Y} J]
"UO YOS P[NOYS UBT-A\ Y} SInuI

G I9)JV "UO PauwIn 9q PNOYS WOOIuE 9y} Ul JYSI| 9y} pue D7 O3 39S 9q p[noys
Suneay o) ‘ Keme $I0JoW () UBY} SSI[Wk] JO passaid ST oouenua Y} 38 YoIIMs Y3 JT
"UO YOJIMS P[NOYS SUIYorl

99JJ0J Y} SANUIW ¢ IV "WIem 0) 9SuByD P[NOYS WOOIPAq dY) UI J0[0d YSI[Y} pue
D07 01198 9q p[noys Suneay ay) ‘QQ:L St 3 10 passaid SI WooIpaq ay) Ul YoIIms Y3 J
"UO PAYIIIMS 9 P[NOYS UBTT-A\ U}

“uo st woo1 SurAr] ay) ur WYSI[Y} 10 A I, 9Y} JOYIIS pue W00l SUIAL] 9Y) UI ST SUOWOS J|
"UO WIN} P[NOYS QUIYORW 39JJ00 3y} ‘pauado st

WOO0IPAq Y} 0} J0OP Y} JO UO ST WOOIPI] Y} UI 09I)S Y} JOYIIS PUB dWOY I8 We | J]
“WIR[R 9Y) PUNOS PINOYS W)SAS ULIe[R

oy yuounede oy ur pouado a1 SI00P JO SMOpPUIM JOYIId PUe dWOY Je ST Apoqou J1

U0 UYOIMS P[NOYS JoLIpruuny

9y} ‘JJO SI UOTJB[TIIUA dU) PUB MO[ST A)pruuny dy} yjoq I0 JJO SI dUIYIBW 99JJ0O Y} J]

(uo wIm) waysAs wirepe 29 (D81 03 19S) SUNBIH «—
(W QOS<) QWoY WOIJ AOULISIP | (WOOIUR) YOIMS

(uo wm) ueT-pM 2 (D027 01 19S) Suneoy «—
(w QOf>) QWwoy WOIJ dOULISIP | (WOOIIUR) YOIMS 80

(uo wIm) auryorwW 39102 29 (D77 03 19S) SUNBIH «—
(00:£) w1y, | (WooIpaq) Yonms

(uo wim) ueT-p\ < (uo ‘woox JurAly) WYSI|

| ((uo ‘w001 SUIAI) AL, 29 (WOOI SUIAI[) QUOSWOS)
(uo wIny) AuIyorW 33JJ09 «+— (pauado st

“woo0Ipaq) I00P | (U0 ‘WO0IPIQq) 0312)S 29 (dWOY))
(wrepe) waysAs wiee «— (pauado st ‘owoy) J00p

| ((pauado st “‘awoy) mopuim 29 (dwoy) ApoqoN])
(uo uwny) JayIpruny <« (Jjo) uon

-B[IJUAA 29 (MO]) K)pIuuny 2% (JJo) SUIYIRW 320

LD

uononisu] uoneInSyuo)) 3o5Ie],

L UoneInSyuo)) [eniu] Yse,

245

	EUP2_camera_ready_rev
	EUP2_camera_ready_app_vert

