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Abstract. This study presents a literature review focused on nonverbal 
communication in human-robot interaction (HRI) that involves service 
robots with social capabilities. We aim to list the types of robots used and 
nonverbal communication cues examined in the reviewed studies; and the 
main research objectives, participant characteristics, data collection 
methods, and primary findings of these studies. To achieve this, we used the 
databases of WoS, Scopus and EBSCO to conduct a literature review on 
utilization of nonverbal cues by both humans and robots during HRI. The 
results obtained from 39 relevant open access academic papers published 
from 2006 to 2023 suggest that enhancing the quality of communication 
between humans and service robots must be improved, while there are 
several aspects that require more thorough exploring, needed to strengthen 
robot self-efficacy, trust and trustworthiness in HRI or overcome cultural 
differences. The results emphasize the importance of nonverbal 
communication in shaping the dynamics of interactions between humans 
and service robots.  

Keywords: service robot; robot assistant; nonverbal behavior; human-robot 
interaction; social interaction; embodied communication; social robot; 
collaborative robots. 

1 Introduction 

A growing number of service robots are emerging from factories and research 
laboratories into people’s daily lives. In terms of financial numbers, the whole 
service robotics market is forecasted to grow from 41.5 billion USD in 2023 to 84.8 
billion USD in 2028 [1]. A service robot, according to one of its earliest definitions, 
is “a freely programmable kinematic device that performs services semi- or fully 
automatically,” whereas services here are understood as “useful work for humans 
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and equipment” [2], excluding industrial automation applications (see also [3,4]). 
More recently, service robots are increasingly expected to make use of AI and 
natural communication [5] to be able to operate in an uncontrolled environment 
[6,7], enabling them to act as socially capable assistants [8]. Such social service 
robots are becoming increasingly important in various fields of human life, 
enhancing efficiency in production or alleviating the lack of workforce in other 
areas such as education or healthcare [1,9,10]. In everyday life scenarios, people 
can increasingly encounter these robots in public spaces without warning. To 
preclude minor conflicts, robots navigating shared physical spaces with humans 
will likely need to conform to the same general interaction norms applicable to 
people. As the assimilation of robots into diverse aspects of human existence 
continues to expand, a nuanced comprehension and effective utilization of non-
verbal cues emerge as imperative for achieving harmonious and efficient human-
robot interactions [11]. For instance, when a person encounters a delivery robot 
on a narrow sidewalk, mutual understanding of intentions is crucial for a safe and 
efficient passage, allowing both parties to proceed along their respective paths 
seamlessly. Consequently, service robots operating amidst ordinary individuals 
must be ready for social interaction [12]. These robots should have the capacity to 
interact with people and move alongside them, while with some of them, their 
control can be taken over remotely by a human operator or they can be used as 
telepresence robots for direct interaction between physically present and remote 
participants. In the context of this paper, we focus on service robots that have 
significant social capabilities (social service robots) being able to participate as 
independent social entities in communication situations. The subcategories of such 
social service robots that fit this description are social robots and robot assistants. 
According to [13], a social robot is an intelligent machine characterized by its 
ability to engage in interactive and conversational exchanges, embodying features 
such as automated personal assistance, ambient assistive living technologies, and 
computational intelligence in the realms of games, storytelling, health care, and 
education services, reflecting a shift from traditional notions of purpose-built 
machines. Whereas a robot assistant, as stated by [14], is an autonomous physical 
device capable of providing services independently, offering benefits such as 
reduced service time, accessible information, personalized service, and consistent, 
albeit limited, service quality. 

Modern social service robots are state-of-the-art machines that can be quite 
expensive. For example, the 5G capable TEMI robot assistant costs $7500, and to 
use all of its features, an additional subscription is needed with the yearly price of 
$1500 [15]. Another robot assistant by LG, CLOi, costs $39,999 [16]. In order to 
justify the implementation costs and successfully capitalize these robots, their 
human users need to be skilled and motivated to accept them [9]. The efficient use 
of social service robots seems to depend on their users’ self-efficacy and is strongly 
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influenced by the robot’s natural communication skills, especially its nonverbal 
communication abilities [5,9,17]. The discernment of human emotions stands as a 
pivotal aspect of HRI facilitated by non-verbal cues. The tacit language of facial 
expressions, gestures, and body language emerges as a conduit for deciphering and 
responding to human affective states. This interpretative acumen engenders a 
more empathetic and adaptive robotic interaction, transcending the confines of 
explicit verbal communication. 

In the establishment of trust and rapport, non-verbal cues assume a critical role. 
In collaborative work settings where humans and robots converge, the ability of 
robots to convey attentiveness through judicious employment of eye contact, 
nodding, and other non-verbal manifestations contributes substantively to the 
perception of reliability and mutual cooperation [12,18]. This, in turn, enhances 
the efficacy of human-robot collaborative endeavors. Moreover, the integration of 
non-verbal cues substantially contributes to the enhancement of the overall user 
experience, rendering interactions more organic and intuitive [19]. In domestic 
environments, for instance, a robot adept at discerning and responding to non-
verbal prompts, such as gestures or pointing, seamlessly integrates into the fabric 
of daily life. This adaptive responsiveness fosters a more fluid and humanized 
exchange. 

Due to their relatively high acquisition and implementation costs [20], it is of 
great economic importance to understand the influence of the social service 
robots’ nonverbal skills on their efficient implementation. To this end we 
conducted the literature review, where we explored the general statistics of 
available papers (i.e., the number of available papers, their publishing years, the 
main contributing countries and authors), and also studied the more specific 
aspects of the literature, such as the robots used in the experiments, the main 
research aims and the nonverbal cues examined, the methods used for obtaining 
data, and the main results of the studies. 

Given the aforementioned context, the question of providing social service 
robots with adequate nonverbal communication abilities becomes increasingly 
important as it holds the keys to efficient use of this promising although relatively 
expensive emerging technology. We aim to conduct a literature review to examine 
the state of the art of the research conducted on the real-life use of nonverbal 
behavior by social service robots in HRI. We will focus on the use of nonverbal 
characteristics such as distance, personal space, touch, gaze, and others as 
expressed or observed and interpreted by physical (not simulated) social service 
robots in their communication with physically present humans in a social 
environment. We have formed the following research questions to guide our 
study: 

Interaction Design and Architecture(s) Journal - IxD&A, N.61, 2024, pp. 164 - 192 
DOI: 10.55612/s-5002-061-006

166



1. What is the state of the art of literature about nonverbal interaction in 
HRI with social service robots? We are interested in the following general 
metrics: 
a) the number of available articles; 
b) the publishing years of the papers; 
c) the main contributing countries; and  
d) the main contributing authors.  

2. In addition, our interests lay in the following specific aspects of the 
studies: 
a) What robots were mainly used? 
b) What were the main research aims? 
c) What types of nonverbal communication were mostly examined? 
d) What kinds of samples and methods were used? 
e) What were the main empirical results? 
f) What theoretical approaches were proposed? 

2 Materials and Methods 

The goal of the study was to understand which nonverbal behavior cues (e.g., 
distance, personal space, touch, and gaze) were considered relevant in the 
literature about HRI between people and social service robots (i.e., robot assistants 
or social robots) in higher education. For these purposes, we followed the PRISMA 
systematic literature review process to conduct a literature review of open access 
papers. We based our search on three well-known, academically respectable, and 
most relevant search engines [21]: Web of Science [22], Scopus [23], and EBSCO 
Discovery Service [24]. We formed our search formula as follows, using the terms 
“robot assistant” and “social robot” in order to narrow down the search results to 
match better our focus on service robots with social abilities:  

(HRI) AND ((robot assistant) OR (social robot)) AND ((non-verbal) OR 
(nonverbal)) 

We used the terms “robot assistant” and “social robot” because these are service 
robots with dedicated social capabilities, and also because the search phrase “(HRI) 
AND (SERVICE ROBOT) AND ((NONVERBAL) OR (NON-VERBAL))” gave significantly 
fewer matches (e.g., only two papers with full text available in EBSCO Discovery). 

Next, we refined our search parameters by restricting the retrieval of articles to 
those classified as "Full text available" within EBSCO Discovery and those falling 
under the category of "Open access papers" in both Scopus and Web of Science. 
This selection process, as illustrated in Figure 1, was executed on 28 October 2023, 
and it yielded 150 articles across these platforms: EBSCO Discovery yielded 36 
papers, Scopus contributed 57, and Web of Science presented 57 papers. 
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Subsequently, to ensure the quality of our dataset, we identified and eliminated 
any duplicate entries. This curation process left us with 88 distinctive research 
papers. Next, we examined the selected papers, excluding any that did not align 
with the criteria of substantial academic content, such as posters, one-pagers, or 
documents that were not peer-reviewed. After this thorough examination, we 
were left with a refined set of 81 academic papers. 

 

 

Fig. 1. The flowchart illustrating the literature selection process. 

Our primary objective was to chart research on real HRI with service robots. We 
excluded purely theoretical studies due to their inability to incorporate modern 
technological advancements, emphasizing the importance of examining the 
human element in real-world HRI experiments while considering the surrounding 
context [25]. In addition, we excluded studies where robots were presented 
through mediating tools, such as computer screens, and virtual, or augmented 
reality. After this exclusion, 39 papers remained to be studied (Figure 1 and 
Appendix A). 

In the analytical phase, the chosen papers underwent a meticulous process of 
open coding, conducted by two researchers. Their objective was to discern and 
delineate clusters of meaning that encapsulated the nuances of nonverbal 
interaction cues within Human-Robot Interaction (HRI). This intricate coding 
procedure involved thorough scrutiny and interpretation of the content. Any 
disparities in coding were addressed through thoughtful discussions, ensuring a 
harmonized and comprehensive extraction of themes. 
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3 Results 

Our final selection of papers concerning nonverbal communication in HRI 
involving service robots with social capabilities, referred to as social robots or 
robot assistants, was based on a search conducted on October 28, 2023, resulting in 
the inclusion of 39 works. This collection of papers can be characterized using the 
following key metrics: 

Firstly, these papers emanate from 20 distinct countries. Among these, the most 
prominent contributors were the United States and Japan, each with 8 papers, 
followed by the United Kingdom and Italy, both contributing 7 papers. 
Additionally, the Netherlands and France each had 5 papers, while Germany, 
Sweden, and Belgium all contributed 3 papers. Next, there were in total 167 
individual authors associated with these papers, with only 16 of them having 
authorship in more than one paper. Notably, Francesco Rea emerged as the most 
prolific author with 5 papers, followed closely by Alessandra Sciutti, who 
authored 4 papers. Finally, the publication dates of these articles span from 2006 
to 2023 (Figure 2). An analysis of this data suggests that the popularity of the 
subject matter concerning the nonverbal communication skills of service robots 
experienced a decline during the years 2015-2018. However, it is worth noting 
that the unique circumstances of the recent COVID-19 pandemic appear to have 
rekindled interest in this topic. Beginning in 2018, the number of papers 
addressing this subject has displayed a consistent upward trend. The relatively 
lower number of papers available for the year 2023 can be attributed to the fact 
that our search was conducted in October 2023, and many papers for that year 
were still in the process of being published. 

Next, we will examine the results for the following specific aspects of the 
selected studies: the robots used; the main research aims; the types of nonverbal 
communication mostly examined; methods used; and the main results. 

 

 

Fig. 2. The distribution of articles by the year of publication. 

Interaction Design and Architecture(s) Journal - IxD&A, N.61, 2024, pp. 164 - 192 
DOI: 10.55612/s-5002-061-006

169



3.1 Robots Used in the Examined Studies 

In the empirical parts of the examined papers, various robot platforms were used 
to investigate the dynamics of communication and engagement between humans 
and robots. Next, we will provide an overview of the most prevalent robot designs 
and types (humanoid robots, bust and face robots, animal robots, and robots with 
product-oriented appearances) employed for experiments in these studies (Figure 
3). 

Humanoid robots are a dominant category, representing 27 instances across the 
examined studies. Among humanoid robots, the NAO robot stands out as the most 
popular choice, with mentions in 10 articles. The NAO robot's humanoid 
appearance, coupled with its programmable capabilities, seems to make it a 
versatile platform for investigating nonverbal communication in HRI. iCub, 
another humanoid robot, is featured in 6 studies, and Pepper, together with 
Robovie II, (both with 2 mentions) also contribute to the diversity of humanoid 
robots in the studies.  

Bust and face robots provide a unique dimension to HRI research, with 4 
instances identified in the examined papers. Furhat [26] and SociBot [27,28] are 
notable representatives of this category. These robots, designed to focus on facial 
expressions and interactions, offer insights into nonverbal cues and facial 
communication between humans and robots.  

AIBO, the robot dog [29], and Pleo, the robot dinosaur [30], are featured in 2 
studies, emphasizing the interest in exploring how animals' behavior and 
interactions with humans can inform robot design and nonverbal communication, 
but also the potential for unconventional robot designs to engage with humans.  

The Roomba iRobot Create 2, a robot vacuum, appears in 1 study [31]. 
Although not a typical HRI robot, its inclusion suggests the exploration of 
nonverbal cues and interactions with non-humanoid robots in domestic settings.  

Five studies [32-36] highlight robots with product-oriented appearances 
designed to maximize dedicated functions (see [37]). These robots represent a 
different approach to nonverbal communication and human-robot engagement, 
emphasizing specific functions and purposes.  

The selection of robots in academic studies on nonverbal communication in 
HRI reflects a broad variety of robot types and designs. Humanoid robots, such as 
NAO and iCub, dominate the field, highlighting their adaptability for studying 
nonverbal communication. In addition, bust and face robots, a robot dog, a robot 
vacuum, and even a robot dinosaur provide unique approaches on nonverbal 
interactions between humans and robots. The inclusion of product-oriented robot 
appearances further diversifies the robot platforms used in these studies, 
highlighting the importance of nonverbal communication in various contexts (e.g., 
in production or warehouses). 
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Fig. 3. Main shapes of robots studied. 

3.2 Main Research Aims 

The predominant research aim among the selected academic papers is to assess 
various facets of HRI. This overarching objective encompasses studies that 
scrutinize the technical proficiency of robots, gauge trust levels, probe 
connections between familiarity and engagement, and explore the consequences 
of robots on human behavior and emotions. We have categorized this wide-
ranging array of research objectives into five discernible categories. 

Understanding Human-Robot Communication and Interaction. Researchers 
have embarked on comprehensive investigations to unravel the intricacies of 
human-robot interaction from diverse vantage points. For instance, one study 
delved into the acceptance and utilization of robots, with a particular emphasis on 
their roles in interactions with children diagnosed with autism [38]. Another 
scholarly work sought to establish correlations between human verbal behavior 
and robot behavior predicated on the personality traits of interacting humans, 
distinguishing them as introverted or extroverted [39]. Trust and the impact of 
nonverbal communication were paramount in a different study [40], while 
another explored the influence of robot nonverbal cues on individuals' perceptions 
of the robot's social agency [27]. Cross-cultural interactions and the efficacy of 
robot greetings and gestures were examined in a particular context [41,42]. 
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Researchers aspired to devise empathetic and multi-modal interactions grounded 
in the emotional-cognitive profiles of users [43].  

Emotional Interaction. The study of the emotional dimensions of human-robot 
interaction has constituted a point of high interest for some researchers. One study 
probed the impact of a humanoid robot on human emotional responses, 
particularly within cognitively demanding tasks [25]. Another investigation 
delved into the realm of personality in human-robot interaction, utilizing AIBO, a 
social robotic pet developed by Sony [29]. Furthermore, researchers delved into 
emotional expression and mood recognition in robot-human interactions, seeking 
to comprehend their effects on participants [44,45].  

Robot Learning and Teaching. The nexus of human-robot interaction extends 
into the domain of learning and teaching. Researchers evaluated the performance 
of machine learners when instructed by human teachers [46]. Simultaneously, 
they probed how humans construed and integrated robot actions within their 
plans [47]. A distinct study grappled with the challenge of evaluating engagement 
in human-robot interaction by amalgamating verbal and nonverbal behaviors [48].  

Cognitive and Behavioral Aspects. Cognitive facets of interaction have assumed 
a central role for specific researchers. They endeavored to devise cognitive 
architectures for robots, facilitating close collaboration with humans in 
cooperative tasks [49]. The examination of the role of interaction dynamics and 
gestures within human-robot interaction was a pivotal focus of the study, 
particularly in joint tasks [50]. In addition, the perception of a robot's speech and 
its influence on language acquisition during interactions were subjects of 
investigation [51]. The inner workings of engagement and the formulation of a 
model delineating its components underwent scrutiny as well [30]. Other studies 
scrutinized the effectiveness of gaze-control techniques and control interfaces in 
shaping robot behavior [52] and monitored visual attention and head pose within 
human-robot interaction [53]. Implementing gaze behavior in functional robots to 
assist humans in deciphering their intent assumed primacy for another cohort of 
researchers [31].  

Robot Behavior and Communication. The formulation of methods for inducing 
and detecting user affect within human-robot interactions has emerged as a 
noteworthy area of exploration [54]. Additionally, the impact of non-verbal 
communication on the efficacy and teamwork of human-robot partnerships has 
been a pivotal focus [36]. 

These diverse thematic clusters encompass a comprehensive array of research 
aims, reflecting the depth and breadth of scholarship within the field of human-
robot interaction. From deciphering the psychological underpinnings of these 
interactions to enhancing robot behavior and communication, the research 
continues to advance our comprehension of this evolving domain. 
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3.3 Types of Nonverbal Communication Examined 

The focus of our study encompasses the nonverbal communication cues 
investigated in the selected papers. These cues play a pivotal role in understanding 
and enhancing the quality of interactions between humans and robots. We 
categorized the nonverbal communication cues found in the selected papers as 
follows (Table 1). 

Table 1. The number of reviewed papers mentioning the nonverbal communication 
categories.  

Nonverbal communication category Number of mentions 
Gesture and Facial Expression 23 
Affective States and Emotions 8 
Voice and Speech Cues 6 
Human-Robot Proximity and 
Movement 

7 

Cultural Aspects and Greetings 3 
 

Gesture and Facial Expression. A substantial body of research has explored the 
use of gestures and facial expressions in HRI. Non-verbal gestures, including hand 
movements, head poses, and bodily movements, have been a common focus in 
HRI research. These gestures serve as crucial elements in conveying information, 
emotions, and intentions in human-robot interactions [31,49,50,53]. Researchers 
have also delved into conveying emotions such as sadness, boredom, and 
happiness through gestures and expressions. This includes the study of expressive 
motions and the mimicry of human gestures by robots. Additionally, facial 
expressions like happiness, sadness, surprise, anger, and laughter have been 
scrutinized as essential nonverbal communication elements in [29,38,55,56] and 
others.  

Affective States and Emotions. Researchers have explored affective states and 
emotions in HRI, examining how robots can detect and respond to emotional cues 
from humans. This includes the investigation of emotional expressions, such as 
arousal-valence and action units [25,55,57,58]. Eye Gaze. The direction of eye 
gaze, as well as the dynamics of gaze via head movement, has been a focal point of 
several studies. Eye gaze serves as a crucial means of nonverbal communication, 
influencing the understanding and interpretation of social interactions in HRI 
[25,28,42,47, and others].  

Voice and Speech Cues. Aspects related to speech, including speech volume, 
speed, pitch, style, vocabulary, topic selection, feedback, syntax, and backchannel, 
have been examined. These factors contribute significantly to nonverbal 
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communication, impacting the quality of human-robot conversations by 
influencing mutual engagement and attentiveness [26,48,59].  

Human-Robot Proximity and Movement. Studies have explored physical and 
psychological distances between humans and robots in various contexts, such as 
movement within a room. The extent and speed of movements, as well as 
distances during interactions, have been scrutinized to understand how these 
factors affect communication and engagement [42,60].  

Cultural Aspects and Greetings. Cultural differences in nonverbal 
communication, particularly in greetings and gestures, have been a point of 
interest. Understanding how cultural norms influence nonverbal behavior in 
human-robot interactions has been a key theme [41,42]. 

These categories of the wide range of nonverbal communication cues play a 
significant role in shaping the effectiveness of service robots during human-robot 
interactions, enhancing engagement, trust, and the overall user experience. 

3.4 Sample and Methods Used 

All reviewed papers reported the size of their human samples. The average sample 
size across these studies is 27, with the largest sample consisting of 120 
participants and the smallest encompassing 5 individuals (Figure 4). Notably, a 
subset of 5 papers specifically focused on children as their sample. Among these 
papers, the sample sizes varied, with the largest involving 67 child participants and 
the smallest comprising 7. In a distinct context, university students were the focal 
group in 16 of the examined papers. Within this category, the average sample size 
stood at 34 participants, with the largest encompassing 120 individuals and the 
smallest comprising 12. Regarding the gender distribution within the examined 
papers, a notable equilibrium was observed. On average, the samples consisted of 
46% female participants and 54% male participants. This balanced gender 
representation within the studies highlights the diversity and inclusivity of human 
participants in human-robot interaction research. Age data was provided in 27 of 
the reviewed papers. The average age of participants across these studies was 
approximately 27 years. The range of ages within the samples varied, with the 
eldest participant reported as 84 years old and the youngest participant as young as 
3. This comprehensive age range underscores the inclusivity of participants across 
different age groups in the realm of human-robot interaction research. 
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Fig. 4. Sample sizes of the studied papers (order: by size). 

The reviewed studies employed a wide array of data collection and analysis 
techniques. Based on the sources of the data, we categorized them into three 
primary groups: (a) data generated by participants, such as interviews and 
questionnaires; (b) data measured during the experiments, including distances and 
ranges of hand gestures; and (c) alternative approaches for data collection. These 
categorized methods played a pivotal role in achieving a comprehensive 
understanding of human-robot interactions, encompassing both objective and 
subjective data, as well as diverse and innovative approaches. 

First, the direct collection of data from participants heavily relied on 
questionnaires. For instance, [32,39,56,61] utilized Likert scale questionnaires to 
assess various aspects of human-robot interaction. [45] and [51] employed pre-test 
and post-test questionnaires. In [43] the participants were requested to complete 
the Chat-bot Usability Questionnaire. In [28] the length of human speech was 
measured through questionnaires, while in [58] data was gathered using TIPI and 
RoSAS questionnaires. In [54] non-verbal emotional behaviors were measured 
through EEG signals. In addition, structured interviews were conducted by [46], 
and participant feedback was solicited by [40]. 

Next, various methods were used to collect objective data. Video analysis was a 
prevalent technique in the studies of [38] and [62], where it was employed to 
scrutinize social interactions and initial reactions of children with autism. In [61] 
it was used to assess the adequacy and intensity of human responses, while [55] 
applied it for automatic personality prediction. In [25] the impact of humanoid 
robots on human emotional responses was explored through video analysis. In [30] 
this method was also employed to test a model specifying the components of 
engagement. In [58] video analysis was utilized to investigate the extent to which 
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a humanoid robot can influence someone's comfort. In [53] visual attention was 
monitored using this technique, and in [44] video analysis was used to recognize 
valence and arousal. In addition, the authors also used techniques such as 
collecting Inertial Measurement Unit sensor data about micro-movements [61] or 
measuring physiological signals and audio-visual behavior to collect physiological 
data [55] or motion sensors for gathering synchronized information streams [53]. 

Finally, the researchers of the selected studies also employed some unique or 
diverse data collection methods. For example, [54] used non-verbal emotional 
behaviors designed to elicit user affect, which was measured through EEG signals; 
in [34] a device called the “Interruptedness Metre” was used to collect ranked data 
from participants. Additional data collection methods included reflection and 
observation. For instance, in [38], the collection of qualitative data involved 
reflecting on parents' and children's views. In [40] free-form observation notes 
were used to capture body language and speech, while in [32] the graffiti wall 
method was employed to understand feelings and perceptions. 

3.5 Main Empirical Results 

To articulate the empirical study directions presented in the analyzed papers, we 
synthesized the principal findings extracted from these documents. Considering 
the frequency of occurrences in the studied works, we categorized the findings 
into seven distinct general themes as follows. 

Nonverbal Communication and Robot Self-Efficacy. Nonverbal 
communication, encompassing facial expressions, gaze, and gestures, is a recurring 
theme across several academic papers. In [27] the powerful impact of facial 
expressions on the perceived anthropomorphism of a robot was emphasized. In 
addition, in [34] it was discussed how nonverbal cues such as speed of motion and 
proximity contribute to conveying interruption urgency and affect the perception 
of disruption by people. Nonverbal cues play a pivotal role in shaping the robot's 
self-efficacy, influencing how participants perceive it.  

Robot Personality and Engagement. The exploration of robot personality as a 
key factor in engaging participants during interactions is a common thread in 
various papers. In [39] the importance of a robot's personality in influencing 
participants' perceptions and preferences was underscored. Combining gestures 
and speech, as suggested in [39], enhances the robot's engagement and naturalness, 
making it more appealing and effective. In [60] the potential for improving 
human-robot interaction by modulating robot behavior to express different moods 
was also indicated.  

Trust and Trustworthiness. The topic of trust is addressed in several papers. In 
[40] the correlation between self-assessed trust and trust measured during a game 
was highlighted, emphasizing the positive impact of nonverbal communication on 
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trust levels. Trust is a critical component in human-robot interactions, and 
nonverbal cues contribute to building and maintaining trust with robots. In [49] it 
was demonstrated how nonverbal cues, such as gaze, significantly improve 
cooperation between the robot and the human participant, underlining the role of 
trust in collaboration.  

Sociability and Familiarity. Participants' perceptions of a robot's sociability and 
familiarity are examined in [61], where more sociable robots lead to a greater 
sense of familiarity. This highlights the significance of nonverbal cues in creating a 
sense of comfort during interactions. In [42] it was also discussed how different 
robot appearances affect nonverbal behaviors, such as the distance and delay of 
response, further illustrating the role of sociability in human-robot interaction.  

Transparency and Active Learning. Transparency in robot behavior is a central 
theme in [46]. It is noted that active learning may not always be the best approach, 
as some participants prefer more control over the interaction. Transparency is 
vital for ensuring that the robot's behavior aligns with participants' expectations. 
In [43] the importance of balancing transparency and legibility of the robot's goals 
were highlighted, emphasizing that a clear understanding of the robot's intentions 
contributes to successful interactions.  

Joint Tasks and Adaptation. Papers such as [47] and [25] delve into how 
participants respond to joint tasks with robots. Participants adapt their gaze 
patterns and engage in joint actions, but there can be challenges, such as finding 
robot movements less humanlike. This topic underscores the need for robots to 
adapt effectively in collaborative settings. In [49] and [55] it was emphasized the 
role of adaptability in human-robot interactions and how different expression 
levels and behaviors influence participants' emotional states and the analysis of the 
robot's role.  

Cultural Differences and Shared Perception. The influence of different robot 
appearances and cultural differences is explored in various papers. For instance, in 
[63] it is discussed how shared perception in interactions improves cooperation 
and performance. Cultural nuances, such as bowing and handshakes, play a role in 
shaping the interaction's dynamics. In [41] and [58] insights are provided into how 
cultural differences affect the robot's learning progress and the robot's behavior in 
response to different cultural contexts. 

These outlined themes underscore the role of nonverbal cues in shaping robot 
self-efficacy, trust, engagement, transparency, adaptation, and the impact of 
cultural differences in human-robot interactions. 

3.6 Theoretical Approaches Proposed 

In order to put the results into proper context, we need also to review the 
theoretical approaches proposed in the literature, starting from the acceptance of 
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service robots by their users. An important aspect of technology acceptance is self-
efficacy that refers to the person’s confidence and motivation in using the 
technology [9]. According to [64], general self-efficacy is “defined as people's 
beliefs about their capabilities to produce designated levels of performance that 
exercise influence over events that affect their lives.” People's self-efficacy in 
using technology, often referred to as computer self-efficacy, is associated with 
their attitudes toward technology, perceived usefulness, ease of use, and reduced 
anxiety [65]. The same principles apply to service robots, as robotics and self-
efficacy are closely linked, influencing initiation, retention, and overcoming 
challenges. Robot self-efficacy is linked to general self-efficacy, tech interest, and 
willingness to use. Although self-efficacy cannot be used as a direct indicator of 
technology acceptance, due to reliance on others and technical issues, it is still 
usable for predicting the individual willingness to use the technology [65].  

In the case of service robots as social entities, self-efficacy depends on the 
robot’s positive social influence on people [66], i.e., its ability to change people’s 
“motives and emotions, cognitions and beliefs, values and behavior that occur in 
an individual” [67]. In other words, self-efficacy depends on the robot's ability to 
be perceived as a social entity that has the potential to establish and maintain a 
social relationship [68]. As suggested by [66,69,70], a robot’s social influence and 
its user’s self-efficacy hinges on the effective utilization of nonverbal cues, a 
crucial element in human communication, i.e., the robot’s ability to have 2-way 
natural communication with humans [5]. In essence, the robot's capacity to 
emulate natural human interaction plays a pivotal role in determining self-
efficacy, highlighting the interconnectedness of both direct verbal and indirect 
nonverbal communication [71]. The importance of the robot’s natural 
communication skills is stressed by [17] by proposing that robots with only verbal 
interaction skills are more likely ignored when asking for help, compared to the 
robots that also use nonverbal cues in HRI. This suggests that effective 
collaboration between a human and a robot would be at least partly based on using 
both verbal and nonverbal cues in their interaction.  

In verbal interaction, mostly language-based information is shared while 
nonverbal interaction carries various cues that help people to share interaction 
roles and to put relayed information into proper context [72]. In addition, 
nonverbal cues help interaction parties predict the next appropriate action. For 
example, the end of someone’s speech can be understood even before the speaker 
tells it [73]. Nonverbal cues involve physical appearance, gestures, and posture, 
face and eye behavior, vocal behavior, space, and environment [72]. However, as 
robotic bodies still do not have the full capacity to relay human nonverbal cues 
immaculately, these cues could become inadequately presented or go missing in 
HRI. Inadequate nonverbal cues could determine robot use self-efficacy and 
acceptance in scenarios where people are interacting in social environments with 
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robots or other persons mediated via robots, such as in higher education teaching 
and learning, in elderly care, or in health care in general [9,10].  

However, there is limited information regarding the real-world utilization of 
nonverbal behaviors in service robots. To address this gap, we delve into three 
case studies [17,65,69] related to robot self-efficacy and the significance of 
nonverbal communication skills in service robots. These case studies served as a 
foundation for shaping our research inquiries.  

The authors of [65] investigate the relationship between self-efficacy and the 
use of robots. The paper highlights the importance of self-efficacy in the context 
of technology adoption, specifically robots. The authors suggest that robot self-
efficacy in healthcare is correlated with general self-efficacy, interest in 
technology, and willingness to use robots. Their study emphasizes the role of 
successful experiences in enhancing self-efficacy, such as interacting with a social 
robot on household-related tasks. This kind of interaction can lead to more 
positive evaluations of the robot. The authors describe their experimental design, 
including measures for participant data, the Robot Self-Efficacy Scale, likability, 
and willingness to use the robot, in their case – the Pepper robot. The results 
indicate that brief interactions with the robot and its likeability play a significant 
role in changes in people’s robot self-efficacy. The study demonstrates the 
importance of self-efficacy in HRI. 

The authors of [69] presented a study about the impact of a social robot's 
expressions, both verbal and non-verbal, on self-efficacy during cognitive tasks. 
The robot, Kebbi, displayed four different expressions: default voice and motion, 
default voice and designed motion, designed voice and default motion, and 
designed voice and designed motion. Seventeen university students with technical 
backgrounds engaged in the Wisconsin Card-Sorting Task, a test involving rule 
changes leading to mistakes. The study monitored participants' heart rates and 
brainwave data to gauge arousal and stress levels and recorded the experiment for 
comprehensive analysis. The study revealed that robot expressions influenced 
participants' perceptions and stress levels. Designed motion, combined with voice 
feedback, made the robot more likable and reduced frustration and stress. 
Individual personality traits also played a significant role in participant responses. 
The research underscores the importance of considering both verbal and non-
verbal robot actions in educational support robots. It highlights the role of 
personal traits and individual differences in human-robot interactions, especially 
when enhancing self-efficacy in educational contexts.  

The authors of [17] explored the impact of conversational interactions, both 
nonverbal and verbal, between robots and humans on relationship building. They 
aimed to determine if such interactions could create a partnership between 
humans and service robots, potentially increasing helpful behavior from humans 
towards the robots. The authors suggest that as humans can form emotional 
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connections with non-living entities, direct, personal, and spontaneous 
interactions are important in building relationships. In addition, for successful 
interaction, humans must perceive the robot as a genuine social actor. In their 
study, twenty-five students interacted with both an interactive and a non-
interactive robot. Their results showed that the interactive robot was perceived 
more positively, resulting in higher social presence and a stronger human-robot 
relationship. The authors suggest that conversational interactions can enhance 
social presence and relationships in human-robot interactions, but understanding 
and predicting helping behavior remains a complex challenge. The authors 
propose that to foster effective cooperation, robots need to establish partnerships 
with humans, akin to how humans naturally collaborate using both verbal and 
non-verbal communication. 

4 Discussion  

In this study, we systematically examined the literature surrounding nonverbal 
communication in HRI, with a specific focus on service robots with social 
capabilities, commonly referred to as social robots or robot assistants. One of the 
underlying concerns of our analysis was how individuals perceive robots – a 
significant aspect of understanding the intricacies of HRI [74]. As socially capable 
robots become increasingly prevalent in our social landscapes, it is important that 
they are perceived positively to seamlessly integrate into our daily lives. The study 
of social perceptions regarding robots emerges as a proliferous field of research, 
gaining increasing prominence in the near future [75]. 

Examining the various robots utilized in the reviewed studies reveals a diverse 
selection, influencing the rapidly evolving landscape of HRI. Humanoid robots, 
such as the NAO and iCub, emerge as dominant platforms for investigating 
nonverbal communication due to their human-like appearance combined with 
their programmable features. However, the inclusion of other robot types such as 
bust and face robots, a robot dog (AIBO), a robot dinosaur (Pleo), and even non-
humanoid robots (e.g., Roomba iRobot Create 2) provides additional perspectives 
on nonverbal interactions between humans and robots [21, 76]. However, 
although most of these platforms are valued in laboratory research, most of them 
are not dedicated robot assistants. 

Our analysis uncovers a range of research aims within the selected papers, 
indicating a comprehensive exploration of HRI. These aims range from the aspects 
of understanding the acceptance and utilization of robots to investigating the 
correlation between human verbal and nonverbal behavior to those of robots. 
Emotional interaction, learning and teaching, cognitive and behavioral aspects, 
and the impact of robot behavior on user affect and teamwork are some of the 
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thematic clusters observed in the literature [74]. Nonverbal communication cues 
examined in the selected papers encompass a broad spectrum, including gestures, 
facial expressions, affective states, eye gaze, voice and speech cues, human-robot 
proximity, movement, and cultural aspects. These cues play a crucial role in 
shaping the effectiveness of service robots during HRI, enhancing engagement, 
trust, and the overall user experience [76]. However, most articles do not reveal 
how authors precisely utilized this knowledge in creating their experiment 
scenarios. 

The diversity in sample sizes and characteristics across the reviewed papers 
underscores the inclusivity of different age groups and gender representations in 
HRI research. The variety of data collection methods employed, involving 
different quantitative and qualitative approaches, contribute to a comprehensive 
understanding of nonverbal aspects of HRI [74]. At the same time, most studies 
were short-term and did not use socially capable service robots in real 
environments with actual users.  

From a synthesis of the main empirical results, it becomes evident that 
nonverbal communication significantly influences robot self-efficacy, personality, 
engagement, trust, sociability, familiarity, transparency in robot behavior, 
adaptation, and cultural differences. The predominant focus of the literature 
appears to outline the impact of nonverbal communication on enhancing the 
perceived seriousness of robots in their interactions with humans, ultimately 
aiming to increase people’s robot efficacy in various settings [77]. Since most 
results were achieved in controlled laboratory conditions, there is a need for 
studies conducted in real-world environments in order to assess whether 
nonverbal aspect of HRI, contributes to both HRI and task performance. 

As we contemplate the development of distinct and evolving personalities for 
robots, ethical considerations are becoming increasingly important. Issues such as 
robot ownership, privacy, and the potential implications of personality-enabled 
robots on humans warrant careful examination [78, 79]. The increasing number of 
articles in this field, likely influenced by the COVID-19 pandemic and rapid 
technological advancements, underscores the growing interest and importance of 
understanding HRI. It is crucial to explore not only how to make robots more 
acceptable to humans during initial encounters but also how to allow robots to 
develop personalities that evolve harmoniously, based on their surroundings and 
the individuals they interact with [77]. One possible direction for further research 
is to investigate whether the robot is perceived more as a robot or as a human, and 
what are those components of nonverbal behavior that influence people's opinions 
about the robot. 

Our results also underscore the significance of theoretical approaches in 
contextualizing the findings. Key concepts include technology acceptance and 
self-efficacy, emphasizing the essential role of self-efficacy in using service robots 
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[9,65,]. Self-efficacy, a critical aspect of technology acceptance, is linked to users' 
confidence, motivation, and their perception of a robot's social influence [64,66]. 
We draw attention to the interconnectedness of self-efficacy, robot social 
influence, and the effective utilization of nonverbal cues, pointing out their 
impact on users' willingness to engage with service robots [5,17,66]. Nonverbal 
communication, essential in human interaction, becomes a pivotal component for 
effective HRI, particularly in education, elderly care, and healthcare [9,72]. We 
highlighted three case studies on robot self-efficacy and the role of nonverbal 
communication in service robots [17,65,69]. These studies emphasize the influence 
of self-efficacy on technology adoption and the impact of robot expressions, both 
verbal and nonverbal, on user perceptions and stress levels. They highlight the 
significance of considering nonverbal cues in educational support robots and the 
importance of creating genuine, interactive relationships between humans and 
robots. Overall, we imply that self-efficacy, nonverbal communication, and the 
interplay between human perception and robot interaction play critical roles, 
shedding light on the complexities and importance of these dynamics in human-
robot relationships. 

5 Conclusions and Future Work 

Our aim was to contribute to the growing body of knowledge in the field of HRI, 
with a specific focus on non-verbal communication of service robots endowed 
with social capabilities. The results underscore the potential of enhancing the 
quality of communication between humans and service robots. Nevertheless, there 
are aspects that have not been thoroughly explored thus far. To date, assessments 
have predominantly measured technology acceptance by humans or their 
perceived efficacy in using the robot within a simulated environment, specifically 
tailored for a particular scenario.  

In forthcoming studies, we emphasize the importance of conducting 
experiments in real public spaces, given that service robots find significant 
applications in such environments. Additionally, scenarios involving collaborative 
actions between humans and robots were limited, despite articles emphasizing the 
creation of an effective robot personality through a collaborative process with 
humans. The interaction between humans and robots in public spaces 
encompasses yet another crucial aspect that the analyzed studies failed to reflect. 
Little attention has been given to understanding how individuals feel in 
communication or collaborative situations with robots, particularly in public 
spaces where others are present. As a final point, despite studies highlighting the 
impact of self-efficacy on technology adoption, there has been no measurement of 
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whether individuals' self-efficacy was higher when they achieved their goals in 
collaboration with the robot.  

As technology continues to advance, further research in this field is paramount 
to ensuring that robots can effectively communicate with humans in diverse 
contexts, ultimately enhancing the overall HRI experience. This article provides a 
comprehensive overview of the current state of research and lays the foundation 
for future investigations in this dynamic field. 
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