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Abstract. Artificial intelligence (AI) has made large changes in major 
industries and disrupted or reorganized many disciplines.  As a result, 
traditional educational practices need to be reexamined to enable learners to 
develop new skills, to manage and utilize new technologies and to increase 
productivity in a rapidly changing world.  A more flexible educational system 
is required to enable life-long and life-wide upskilling and reskilling.  This 
article provides four grand challenges for AI and education to optimize digital 
learning, online resources and virtual classrooms. It suggests several problems 
to address, visions to spur the field forward and strategies that will make 
teaching and learning more effective. The article also considers ethical use of 
technology, decreased jobs in some sectors and the possibility that AI will 
exacerbate an existing deficit in diversity and equity among students. 
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1   Introduction  

Artificial intelligence (AI) has been integrated into almost every industry, e.g., 
healthcare, government, communication, and finance and is present in everyday 
interactions through smart phones, cars, homes and more, a testament to the immense 
potential of the technology and its ability to reshape nearly every sector. AI is critical 
in travel (directional way-finding), daily life (legal issues and civic responsibilities), 
and health care (medical and pharmacological information, self-care strategies, 
distance medicine). Yet AI-based education remains not well utilized; despite the 
immense theoretical potential along with a large amount of monetary investment, 
intelligent learning technologies have not yet delivered impactful results in real-world 
education, nor are deliverables institutionalized within traditional teaching 
environments. 

One long-term goal for AI and education is to contribute to changing the current 
transmissive, regimented and school-factory model of education based on student age, 
location, and classroom, and to move towards a more social, diverse and equitable 
model of instruction. AI can’t change the transmissive model itself, because the 
learning paradigm needs to change from “learning by knowing” to “learning by 
doing” [37]. The gap between knowing and doing can be a problem in education, 
management, science, and health. It can occur when someone has knowledge of 
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something but doesn't apply it in real life. For example, one way to bridge the gap 
from knowing to doing is through experiential learning or encouraging students to 
learn through experiences that help them retain information. Traditional models of 
education (fixed classrooms, one-to-many lectures) struggle to accommodate diverse 
learning styles and preferences. AI can build in education flexibility, accessibility and 
personalized experiences. Personalized learning systems adapt instruction to each 
student’s individual learning style and pace, complimenting learning and freeing 
teachers to spend more time on instruction and one-to-one counseling. Personalization 
by itself is not enough to change the learning paradigm, as human support is needed 
to monitor the development of competencies. 

A Brief Overview of AI. Many  grand challenges in education have been 
identified and numerous artificial intelligence (AI) technologies have been employed 
to tackle each challenge (Table 1). AI is a set of technologies designed to enable 
computers to perform tasks that mimic human intelligence, including to see and 
understand (process visual and written information), analyze data (organize and 
evaluate large amounts of data to solve problems), make recommendations 
(suggestions based on data analysis), learn and reason (use knowledge to solve 
problems), and act (achieve goals through actions). Generative AI tools, discussed in 
this article, use technologies to create original text, images,  video and other content.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Elementary school children draw distinct butterfly pictures on digital devices 
during a field trip to a museum. Individual graphics are stored in a class database. 
 
These tools are built on machine learning (algorithms that enable systems to learn 
from data) and deep learning (neural networks to mimic human intelligence). Other 
AI subfields mentioned in this article include natural language processing (speech and 
text recognition, analysis, and generation), computer vision (used for facial, 
emotional, and gesture recognition), automated speech recognition (voice recognition 
and speech production devices like Siri and Alexa), and decision management 
(automate decision making in organizations to improve operational decisions). AI has  
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Table 1. Characteristics of AI and Education. Educational challenges (Column 1), the 
educational impact of solving each challenge (Column 2) and AI technologies used to tackle 
each challenge (Column 3). The AI technologies listed in Column 3 are not exhaustive; many 
others might be used. Legend: ML (machine learning), LLM (large learning models). 

Educational 
Challenges 

Teaching and Learning Features 
(How is teaching/learning impacted)? 

AI Technology for the Challenge 
(Which AI technology is used)? 

Pedagogical Innovations 

Personalize 
teaching 

Recognize /infer student knowledge, behavior 
and emotion; Adapt responses, questions and 
content for each learner. 

User models, ML, deep learning, 
LLM 

Foster critical 
thinking 

Students clarify their own thinking, analyze 
facts, evidence, observations, and arguments to 
form judgements; Students are in control of their 
learning. 

Natural language processing, 
generative AI, deep learning, LLM, 

Multimodal 
learning 

Use multiple senses and teaching styles, e.g., 
kinesthetic, auditory, and visual to reinforce 
knowledge comprehension. 

Computer vision, embodied 
cognition. 

Address the Digital Divide 

Equitable 
distribution of 

education 

Provide opportunities, transparency, 
accountability and support for underrepresented 
communities; Strive for social justive. 

Big data, ML, deep learning, 
optimization, stealth assessment 

Diverse, ethical 
inclusive 
education 

Respect, value, and incorporate learners’ 
diverse cultural backgrounds, experiences, and 
perspectives; Create cultural sensitivity and 
inclusivity. 

ML, deep learning, LLM, data 
security, data privacy, avoid bias in 
AI databases and training, avoid 
exploitive labor practices. 

Collaborative 
problem solving 

Improve academic achievement, social and 
emotional development, and peer acceptance; 
Recognize that benefits extend over generations. 

ML, deep learning, LLM, interfaces 
for critical thinking, creativity and 
collaboration. 
  

Global Learning Communities 

Benefit more 
students 

Provide access to high quality educational 
tools, resources (problems, answers, hints) 
produced at scale; Improve professional learning 
about using/integrating AI tools into schools. 

Intelligent tutoring systems, 
adaptable systems, open sources AI 
systems. 

Lifelong 
learning 

Develop career platforms in which agents 
motivate users; make age, economic, and cultural 
considerations; Teach within practical/real-life 
contexts, promote self-efficacy. 

AI-based agents as facilitators 
integrated into learning 
environments, virtual learning 
companions 

Data-Driven Decision Making 

Predictive 
analysis 

Data-directed decision-making to identify 
patterns and trends; Provide immediate responses, 
personalized learning paths; Guide institutional 
learning (budgeting, transparency). 

ML, deep learning, big data, 
Computer vision, facial expression 
recognition, gesture recognition. 

Model 
teaching and 

learning 

A proxy of real learners (many backgrounds 
and different learning context); Stakeholders 
practice strategies with the model, identify 
pedagogical practices, test the quality and 
difficulty of new learning content and predict 
learner deficiencies. 

Planning, user models, LLM, 
generative AI, learning science, 
cognitive science 
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many applications, including: self-driving cars, speech and facial recognition, digital 
personal assistants, and virtual customer service, and recommendation engines. 

Perhaps an apt metaphor for current AI and education is a bonfire ready to ignite-- 
along with the promised inordinate benefits come the dangers of unintended 
consequences and misuses [65]; along with great power comes great responsibility. 
Limitations exist for using AI in education; some AI systems are not consistently 
ethical (lack of privacy, diversity and inclusivity); some are of mixed quality 
(truthfulness of chatbots in classrooms can’t be guaranteed); many are created in the 
developed world and thus don’t represent the majority of global stakeholders; often 
these systeems do not provide good predictive power (of student grades); and are not 
effective with issues that require a user’s subjective judgments (personal taste, ethics 
or moral dilemmas). This article discusses the consequences that the introduction of 
AI in education may have on individuals, groups and the global economy.  

Computers, with or without AI, will not replace teachers; they can’t provide face to 
face contact and don’t provide the wealth of experience that a teacher has [40]. They 
are not as interactive as human teachers; they don’t feel emotion, and can’t care for 
children, discipline students nor provide safety for vulnerable people. However, they 
can enhance and enrich education and be used as tools in the classroom, as described 
in this article [40].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Student completes assignments while a digital tutor selects problems and 
questions based on individual learning needs.   

 
School leaders who put their heads in the sand and ignore the potential impact of 

AI on education are committing a serious disservice to students when it comes to job 
market competitiveness [52, 66].  Many challenges remain and we stand on the brink 
of a new era in a young field with an upward trajectory. Yet, new policies need to be 
put into place to safely leverage the vast potential of AI and education for the benefit 
of humanity, moving the field from prescriptive algorithms to a human-centric and 
impactful ecology [16]. Computers with AI will also make big changes in the 
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workplace; countries with more advanced economies will face greater risks as about 
60 percent of jobs in such countries will  be impacted by AI [30, 37]. Workers who 
can harness AI will experience increased productivity and wages—and those who 
can’t, will fall behind [37]. Roughly half the exposed jobs may benefit from 
integrating AI into existing jobs to enhance productivity. For the other half, AI 
applications will take over some key tasks currently performed by humans, which 
could lower labor demand, leading to lower wages and reduced hiring. In the most 
extreme cases, jobs will disappear. It is estimated that over 30% of current jobs 
require some type of AI skill and this number will increase sharply by 2030 [37].    

This article identifies four (4) grand challenges for AI and education and considers 
affordances of new technologies, e.g., massive data sets might follow students during 
their lifetimes and make predictions about student learning and affect. Risks of AI and 
education include exacerbating the inequalities of students or having biases (e.g., 
referring to people in certain professions who look or talk like the dominant 
populations). This article contributes to ongoing discussions (involving researchers, 
teachers, parents, and other stakeholders) to redesign education and learning through 
people centered learning ecosystems [9, 66].  AI will help these community 
movements to assemble evidence of student learning and teacher leadership in ways 
that were heretofore impossible. It can support relationship-centered and inclusive 
education for marginalized students. This article suggests a framework for moving 
forward desirable AI affordances while also considering AI liabilities. 

2 Pedagogical Innovations 

A first grand challenge for AI and education is to provide pedagogical innovations for 
learners, e.g., as students work on computers, an AI partner or “more knowledgeable 
other” becomes an assistant teacher for each student, supporting students emotionally 
[5, 8, 10, 24, 25]. The integration of AI in education operates through fundamentally 
different technological approaches, each serving distinct purposes in the educational 
ecosystem [17, 66]. Understanding these differences is crucial for effective 
implementation and evaluation of improved learning. 

2.1   Technologies for Institutional and Personalized Responses 

A first feature of pedagogical innovation involves supporting institutional teaching, 
e.g., specific materials for organizational-level implementation [50]. Learning 
Management Systems (LMSs) typically utilize database management systems, 
scheduling algorithms, and analytics tools operating at the institutional level [64]. 
These systems process structured data about curriculum, resources, and administrative 
tasks using traditional database technologies and rule-based algorithms) [34]. 
Resource allocation systems employ optimization algorithms to schedule classes and 
assign rooms, while assessment tracking platforms use statistical analysis tools to 
monitor institutional-level performance metrics [99]. 

In contrast to institutional systems, technologies providing personalized feedback 
employ fundamentally different approaches that operate at the individual student level 
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[96]. These systems require sophisticated real-time processing capabilities and 
adaptive algorithms to respond to individual learner needs. Research indicates their 
effectiveness varies significantly based on implementation context and student 
characteristics [51].  
 
Natural Language Processing (NLP) Systems: Advanced NLP technologies form 
the foundation of personalized feedback systems, employing large language models to 
analyze and respond to student work in real-time [106]. Unlike institutional systems' 
simple pattern matching, these tools process complex linguistic structures to 
understand student responses at both syntactic and semantic levels. Studies suggest 
that modern NLP systems can provide context-aware feedback by analyzing not just 
correctness, but also the reasoning process evident in student responses [48]. 
However, research indicates the effectiveness of such systems varies across different 
subject domains and student populations, requiring careful calibration and ongoing 
refinement [64]. 
 
Adaptive Learning Algorithms: These systems employ dynamic machine learning 
models that continuously adjust to individual student learning patterns. Unlike 
institutional systems' fixed rule-based approaches, adaptive algorithms create detailed 
learner models that evolve based on student interactions [99]. The technology tracks 
multiple parameters including response patterns, time-on-task, help-seeking 
behaviors, and learning progression to customize instruction. Research demonstrates 
that effective adaptive systems must balance immediate performance optimization 
with longer-term learning goals [51]. 
 
Real-time Analysis Systems: Modern personalized learning platforms process 
continuous streams of student interaction data, requiring substantially different 
architectural approaches than batch-processing institutional systems [88]. These 
systems analyze multimodal data including: student response patterns and solution 
strategies; temporal aspects of problem-solving attempts; help-seeking behaviors and 
resource utilization; and engagement indicators and affective states. This real-time 
processing enables immediate instructional adjustments based on student needs [34]. 
 
Intelligent Tutoring Systems: Intelligent tutoring systems (ITSs) provide one-to-one 
online teaching through a variety of environments, e.g., modeling, simulation, 
gamification, and hypermedia. These systems can include learning peers, e.g., 
animated characters that communicate with students [97, 53].  They perform well in 
contexts where students would otherwise have no teacher and are nearly as effective 
as human tutoring [51, 96]. They can leverage real-time affective feedback from 
students to improve their learning experiences. AI systems can generate content, 
problems, summaries and feedback and work well in blended learning situations. 
These tutors have garnered positive results [51] and trained people in fields such as 
medical diagnosis [21], electronics [102], marine steam propulsion [41] and taught 
many other disciplines, e.g., mathematics, computer science, language arts, sports, 
economic history, social issues, history, and politics [75].  

AI helps produce new resources for traditional teaching,  e.g., it can generate 
problems, answers, hints, visual and interactive content summaries and synthetic 
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video materials that are as effective as learning from human teachers’ video 
recordings [88]. More attention needs to be paid to determine effective ways to train 
teachers and parents about using AI tools and integrating them in traditional teaching 
practices, e.g., professional learning to help teachers use it, gain confidence in using 
it, judge product quality and reliability, assess potential workload considerations, and 
learn to trust these systems (assuming that these tools deserve to be trusted). Other 
constraints are schools’ support mechanisms for helping teachers work with such 
systems in their classrooms and potential privacy and ethical concerns around a 
system’s ability to support inclusion, diversity and equity.   
 
Integration and Orchestration: Recent advances have focused on integrating these 
various technological components into coherent learning environments. Research 
indicates that successful integration requires careful orchestration of different AI 
components to provide seamless support while maintaining pedagogical effectiveness 
[17]. Studies suggest that well-integrated systems can approximate the effectiveness 
of human tutoring in specific contexts, though their success depends heavily on 
proper implementation and support [96]. 
 
Limitations and Considerations: While these technologies show promise, research 
indicates several important limitations. The effectiveness of personalized feedback 
systems can vary significantly based on factors including: student preparation and 
prior knowledge; subject matter complexity; implementation quality; available 
computational resources; and teacher training and support. Understanding these 
limitations is crucial for effective deployment [66]. 

2.2   Personalizing Responses Based on Individual Learning Needs 

Another feature of pedagogical intervention is to adjust content and difficulty levels 
based on individual student performance. One objective is to design effective 
knowledge acquisition tracks that match the learner’s strengths and address 
weaknesses to ultimately meet his/her desired learning goal [64]. Personalized 
teaching is provided when students make mistakes (providing help) or when they 
appear confused during cognitive conflict [3].  Pacing problem solving and learning 
materials can personalize tutoring to reach more diverse learners and enhance 
accessibility.  

However, many risks/limitations of personalized teaching need to be considered. 
For example, personalization might only marginally contribute to changing the 
transmissive approach to education as it is focused mainly on content learning and 
knowledge transmission and, partially, also on problem solving. This approach may 
favor development of some abilities but not necessarily competencies.  
 
Large Language Models. Large language models (LLMs) respond to user requests 
with relevant content, and recognize, translate, predict, or generate text or other 
content to process, understand, and generate human language. LLMs are useful for 
analyzing, summarizing, and creating content across many disciplines. They use deep 
learning algorithms to analyze large amounts of data and perform natural language 
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processing (NLP) tasks on that data. They are trained on massive amounts of text, 
learning to recognize patterns and relationships between words and phrases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 3. A young boy interacts with a robot in a laboratory. Social robots provide 
learning experiences through social interaction with learners. Long-term human-robot 
interactions highlight the increasing popularity of using social robots in educational 
environments. 
 

LLM are used to personalize education within educational partnerships, in which 
the human or LLM might benefit. For instance, students might work in conjunction 
with ChatGPT-4, to develop and refine assessment questions or explanations of 
learning content. LLMs are conversational and responsive to diverse student input and 
facilitate productive student thought rather than produce specific output. Such systems 
might be judged on the use of supportive and encouraging language or on giving 
topical hints phrased in a way a 7th grader would understand. LLMs can develop 
question answering systems [60], generate multiple choice questions [20], score 
essays [105], perform reasoning [110], support critical thinking [1] and solve math 
word problems [59]. They might cater to special needs, disabilities, and specific 
preferences of learners (e.g., readability, language, level of language, speaker speed, 
etc.). Limitless activity types can be created using a plethora of techniques. 

Traditionally, creating personalized educational content for intelligent tutoring 
systems (ITS) has required a collaborative team of curriculum designers, subject 
matter experts, and instructional technologists. This process is both time-intensive and 
costly, especially when content requires regular updates to keep pace with curriculum 
changes, technological advancements, and evolving student needs. Large language 
models (LLMs) offer a transformative approach to reducing these high content 
creation costs. LLMs, trained on vast datasets across various subjects and disciplines, 
present a low-cost, rapid solution for generating educational materials like questions, 
explanations, feedback, and hints. For example, LLMs excel in math content 
generation, with models like OpenMathInstruct-1 scoring high on a dataset of 8.5K  

Interaction Design and Architecture(s) Journal - IxD&A, N.64, 2025, pp. 28 - 62 
DOI: 10.55612/s-5002-064-001sp

35



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. A student’s facial expression and gestures are tracked while he studies. A personal 
tutor responds to his emotion, motivation and interests. 

high quality linguistically diverse grade school math word problems created by 
human problem writers. This model also scores well on the MATH dataset 
benchmarks, which evaluate LLM responses to complex math problems [92]. For 
example, LLM can summarize text and produce questions and tests from that text 
[106]. This provides flexibility for students to choose what and when they learn, with 
or without human teachers. Recommender systems advise students which lectures or 
videos to view based on their learning and interests. Additionally, sentence-deletion 
methods for text simplification and knowledge extraction from textbooks have been 
tested and their effectiveness and the resulting discourse measured [86, 112].  

LLM-generated hints enhance online math learning by providing adaptive, clear, 
and structured support, simplifying complex concepts, and guiding students through 
each step. Pre-service teachers in one study valued these hints for their accessibility 
and relatable connections to familiar concepts, which make challenging material more 
manageable [36]. This responsiveness enables ITS systems to deliver on-demand, 
personalized assistance, reducing human intervention and fostering scalable, inclusive 
educational support.  
 
Recording Student Characteristics. AI and advances in big data analysis have 
enabled educational platforms to precisely record students’ academic and affective 
characteristics [48, 64].  For example, AI can track students’ learning, reason about 
their behavior and performance, provide real-time interventions, enhance student 
engagement, promote active learning and cater to diverse learning styles. Machine 
learning (ML) is the process of parsing data based on a sampling data set known as 
“training data” to generate meaningful patterns and structured knowledge. It can 
leverage student achievements data, aspirations, e.g., ML can help create 
recommendations for students as they select classes, even choose universities. 
Moreover, this technology can help instructors gain an understanding of how each 
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concept was digested by each student [50]. In this way, instructors can adjust the 
teaching method to work well based on students’ cumulative records, which may help 
students grasp course material better. This is done, in part, by observing past 
experiences available through data and by exploring the learners’ features and 
similarities. For example, the system recommends the most appropriate content 
among numerous possibilities, including well-designed long-term curricula, and 
connects learners to performance evaluation. AI tools recognize and respond to 
learners’ performance or emotional states using technologies that detect facial 
expressions, gestures, and other physiological signals to infer emotional states [85, 
108, 109]. 

2.3   Foster Critical Thinking and Student Control 

Another feature of the pedagogical innovations challenge is to enhance a student’s 
critical thinking, which involves a learner’s ability to analyze facts, evidence, 
observations, and arguments to form judgements. This requires that learners be self-
directed, self-monitored, and self-corrective. One challenge is to foster development 
of the widest possible range of life competencies (among which critical thinking is 
one).  

One quick way to use AI to help teach critical thinking is for learners to repeatedly 
ask questions of a chatbot (e.g., ChatGPT, Bard) and to continue questioning the 
chatbot to refine their own critical thinking. The answers received from chatbots are 
full of facts and results generally expressed in syntactically correct English. AI tools 
also amplify human creativity in digital art software [113], music production tools 
[93] and platforms for individuals to express creative ideas, helping learners to flesh 
out ideas for text, graphics, ideas, alternatives, and to compare their creative products. 
Currently, AI has had a limited impact on students’ critical thinking and problem 
solving [80].  

AI also supports learners to be in control of their own learning, e.g., LLMs support 
learners to set their own agenda, ask their own questions and become engaged in 
natural conversations about nearly any topic [106]. Promising results in pre-training 
LLMs for educational settings enable tutors to discover patterns and relationships 
among topics, student learning styles and skills and knowledge [64, 106]. They can be 
tweaked to satisfy educational design goals, e.g., to prefer short responses [19] or 
longer responses, appropriate for giving feedback on essay drafts [69] Other design 
goals may include that the tutor should engage in ‘Socratic-style’ dialogues to guide 
students to arrive at the correct answer without directly providing a solution [76] or 
that the LLM should avoid hateful, abusive, or derogatory speech, particularly when 
used with children. 

LLMs store terabytes of data (e.g., books, papers, or web pages) and use natural 
language to converse with humans and the more data fed, the better they can create 
new material.  Chatbots or question-answering (QA) agents help students talk with 
data and support conversations between machines and humans. Yet these systems 
come with great risks; they may hallucinate and produce incorrect statements; and 
data is subject to algorithmic bias (in terms of gender, race, and culture). Most LLMs 
that incorporate neural networks are trained on huge amounts of text to aid in natural 
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language processing. However, the quantity and quality of training data are critical to 
ensure diverse, ethical and inclusive instruction. Deployed unchecked, these models 
can exacerbate falsehoods, inaccuracies and biases of gender, race, or culture at scale 
and lead to the homogenization of thinking due to the monolithic nature of the 
models. The text (and graphics) produced by LLMs are difficult to explain (interpret), 
placing their accuracy and truthfulness in doubt. Notable large chatbots include 
ChatGPT-4, regarded as one of the most complex ever developed. It was originally 
trained on terabytes of data created in 2021 and comprises 175 billion parameters. It 
now has unrestricted access to the entire internet. Training the GPT algorithm requires 
several months due to its massive size.  

Many logistic benefits are provided by AI language models in education; they 
support learners to make basic corrections to spelling and grammar, proof reading 
work for students writing projects, neatening up papers or write-ups, along with 
suggesting tools for improving wording or clarity and software helps students cite 
sources correctly and do research [83]. Image input technology (available with 
ChatGPT) enables software to read and identify elements of an image and turn it into 
text; a game-changer for students with visual disabilities.  

However, students should not let chatbots generate whole essays; LLM answers 
from chatbots are not necessarily truthful nor accurate and learners must check every 
sentence produced for misstatements and falsehoods.  People often become oblivious 
to the faults of LLM and allow these systems to prepare reports. In fact, learners 
should repeatedly supply new questions to refine their own thinking and check the 
truthfulness of system response. Relying on AI-generated content for answers or 
solutions may produce a worse grade than if students had written the document 
themself.  Although the resulting documents might be technically correct, the base 
software generally isn’t smart enough to write anything above a low average 
university paper [14]. Though the text might be quite insightful, teachers should 
advise students that the best way to avoid charges of plagiarism with chatbots is to 
write the text themselves. Plagiarism is a serious issue, and students should be 
penalized for doing it [56]. However, recent research indicates that language analysis 
tools (e.g., Turnitin) are not reliable in detecting ChatGPT-generated text [101]. These 
tools look for features such as unusual word choices, repetitive sentence structures, 
and a lack of originality. Also, teachers can tell if something was written by ChatGPT 
quite easily [36]. Even with a hyper-specific prompt, the resulting written material 
will be a generic essay that is easy to spot.  

ChatGPT can’t replicate human intellect, nor reason about its own data, nor 
incorporate new knowledge. It predicts the next word based on what is already seen. 
AI based applications, such as ChatGPT can support human creativity but they cannot 
be creative (i.e., they can only propose recombinations of previously generated 
elements). Competence-based education, in which application like ChatGPT partake, 
explores development of a paradigm aimed at the harmonious development of the 
learner that could favor transformation of the “factory-school” model [38]. AI will 
remain as assitants to teachers; humans need to remain creative (writing, composing, 
sharing) as an outlet for their expression, enabling them to be heard in different ways, 
increasing engagement and boosting self-confidence.   
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2.4   Multimodal Learning Interactions 

Another featuere of the pedagogical innovations challenge is to integrate multimodal 
learning (not just cognitive learning) and to include different learning styles at the 
same time. Students learn best when educators provide multiple and multimodal 
learning styles using various media. This includes the use of multiple senses and 
teaching styles, e.g., kinesthetic, auditory and visual. AI applications contribute to 
multimodal teaching. This section examines how AI supports multiple modes of 
interaction beyond purely cognitive approaches, recognizing that effective learning 
engages multiple sensory and social channels. 
 
Physical and Gestural Interaction. Research suggests that physical interaction plays 
a crucial role in learning processes [61, 71]. Computer vision systems form the 
foundation of motion tracking in educational environments, using specialized 
algorithms to capture and interpret students' movements and gestures in real-time 
[42]. These systems differ significantly from traditional educational technology, 
requiring sophisticated spatial recognition algorithms to understand three-dimensional 
movement patterns and translate them into meaningful learning data,  see Section 5.1 
[4, 6]. Haptic feedback systems complement this by providing tactile responses, 
creating a bidirectional channel of physical communication between learners and 
educational content [63]. Studies indicate these technologies require fundamentally 
different processing approaches than traditional cognitive-focused systems, as they 
must integrate multiple streams of spatial and temporal data in real-time [74, 115]. 
 
Affective Computing Integration. Emotional engagement represents a distinct mode 
of interaction requiring specific technological approaches. Modern emotion 
recognition systems employ facial expression analysis through specialized computer 
vision algorithms that track micro-expressions and facial muscle movements [4, 27]. 
This visual analysis works in concert with voice tone analysis systems that process 
audio inputs to detect emotional states through vocal patterns, pitch, and rhythm [24, 
25]. Additionally, physiological signal interpretation adds another layer of emotional 
understanding by monitoring indicators such as heart rate variability and skin 
conductance [7, 48]. These integrated systems employ different architectures than 
cognitive learning tools, focusing on real-time signal processing and pattern 
recognition across multiple sensory inputs to build a comprehensive understanding of 
learner emotional states [5, 8, 10]. 
 
Social Learning Support. Social interaction technologies use distinct approaches 
from individual learning systems, focusing on the complex dynamics of group 
learning. Network analysis algorithms process interaction patterns among learners, 
tracking both direct communications and implicit connections formed through shared 
learning activities [114]. Collaborative filtering systems build on this network 
analysis to support effective group formation, using historical interaction data and 
learning outcomes to suggest productive learning partnerships [39]. Social graph 
analysis tools extend this functionality by monitoring the evolution of learning 
communities over time, tracking changes in interaction patterns and identifying 
emerging leaders and support networks within student groups [94, 116]. These tools 
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require fundamentally different architectural approaches than individual learning 
systems, as they must process and analyze relationships and group dynamics rather 
than individual performance metrics [72]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Students on a forest field trip use devices to make observations about leaves. 

Environmental Integration. Learning occurs within complex physical and digital 
environments, requiring specialized technological approaches to support effective 
instruction. Internet of Things (IoT) device networks create a foundation for 
monitoring physical learning spaces, collecting data about environmental conditions 
that might affect learning outcomes [16]. These systems work in conjunction with 
environmental adaptation systems that can automatically adjust learning conditions 
based on collected data, optimizing factors such as lighting, temperature, and noise 
levels for different learning activities [46]. Context-aware computing builds on this 
environmental data to support situation-appropriate interactions, adjusting the 
presentation of learning materials and the nature of learning activities based on 
physical conditions and time of day [6, 22]. This integrated approach requires 
sophisticated sensor fusion algorithms and real-time adaptation systems that differ 
substantially from traditional educational technology architectures [13, 23].  
 
Tracking Student Movement with Computer Vision. Computer vision is used to 
track learners’ bodies, gestures and physical interactions while they learn. Students' 
actions and gestures are essential components of their learning, as ideas that are 
distributed among the mind, the world, the social context, facial expressions and hand 
gestures support essential communication during learning [74]. For example, students 
in classrooms explore mathematical relationships and concepts by manipulating real 
objects in the environment and communicating face-to-face with peers/teachers[4, 6].  
Yet, there is a significant disparity between the current learning technologies 
employed in schools and effective practices of educators. For example, conventional 
K-12 mathematics technologies are typically not designed to facilitate embodied 
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cognition; instead, they tend to align with more traditional perspectives on student 
learning (e.g., show video, give quiz).  
 
Embodied Cognition. Embracing embodied learning implies moving the human-
computer interaction (HCI) “off the keyboard” so students experience 
phenomena/relationships, engage in hands-on and socially-rich activities, and obtain 
support during moments of struggle and cognitive conflict [48]. The theory of 
embodied cognition assumes that sensory perceptions, motor functions, and 
sociocultural contexts shape the structure and development of thinking skills, 
including mathematical thinking [42, 116]. Learning involves the creation, 
manipulation, and sharing of meaning through bodily interactions [61].  For 
example, research on hand motion gestures to externalize ideas suggests that a motor 
encoding of math ideas exists, and thus, that mathematics teaching should use bodily 
motion, action (hands-on and body-on), and hand gesturing. Random movement does 
not lead to math learning, rather movement encouraged by math-embodied activities 
will capture, and/or express mathematical concepts to be learned [71].  

Several learning technologies have addressed embodied learning, a shift that 
entails focusing on refining and deepening physical interactions with learning 
technology. For example, teachers have implemented tasks that are hands-on and 
cognitively demanding [22]. This challenge includes technologies tailored to support 
intelligent tutoring systems that trace students’ knowledge by tracking students’ 
performance and mental states (i.e., knowledge and affect) and embodied cognition 
and multi-modal interaction (students physically act on the environment in 
meaningful ways for more solid understanding/encoding of ideas). 

This challenge facilitates bridging from concrete representations to abstract 
concepts, and involves students expressing solutions to math problems through their 
entire bodies. This may include using the body to measure objects, people, or spaces, 
and even physically walking out numerical mathematical solutions.  Manipulatives 
or physical props play an important role, acting as bridges between familiar, intuitive 
prior knowledge and new concepts, supporting students to develop abstract 
mathematical thinking [13, 23]. 

For example, a new technology called Wearable Learning addresses the need for 
AI systems aligned with existing dynamic classroom activities, where students work 
collaboratively, use manipulatives and engage in discussions, rather than sit in front 
of computers [4, 6, 81]. This approach rethinks the design of educational technologies 
and moves students to engage their whole bodies, to gesture and interact with the 
world. Wearable Learning argues for development of AI systems that embed concepts 
from embodied cognition and learning theories. 

Using AI for teaching math aligns with theories about how people learn. For 
example, embodied learning posits that sensory-motor skills are essential for learning. 
The exploration of cognition in research is expanding interactions to encompass wider 
viewpoints [33]. AI can guide students to encounter, discover, and rehearse 
perceptuo-motor schemas in relation to math concepts and relationships [73]. 
Cognition can be linked to student action and supports the idea that physical motion 
aids learning [63].   
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3   Address the Digital Divide 

A second grand challenge for AI and education is to address the digital divide and 
develop strategies that enhance equitable education access for all people. Short term 
measures usually involve acquiring hardware and connecting with networks, e.g., 
providing devices, establishing WiFi hotspots, expanding technology access in public 
libraries and advocating for government policies to close the digital divide [72]. Long 
term strategies involve local communities, educational institutions, and policymakers 
for sustained efforts and effective solutions  

3.1.  Equitable Distribution of Education 

One feature of adressing the digital divide is equitable distribution of resources to 
educate all people. Strategies are needed to achieve equitable distribution and to 
ensure transparency, accountability, and support for underrepresented communities, 
while also promoting social justice and collaboration across sectors, e.g.,  assessment 
of educational needs, targeted funding, community engagement, transparent allocation 
processes, equitable educational opportunities, affordable educational services, 
workforce development programs, periodic evaluation and international cooperation 
[72].  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 6. A computer provides access to a vast amounts of information, interactive learning 

tools, multimedia content, and the ability to organize and manage study materials 
efficiently. However, its effectiveness depends on how it is used. Students must manage 
distractions and be mindful of potential downsides like screen fatigue, improper learning 
techniques and passive learning. 

 
Research suggests that AI may help address certain diversity issues. For example, 

studies indicate that AI-powered tools can assist with cross-lingual translations and 
topic annotations, though effectiveness varies across languages and contexts. Students 
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with special needs or disabilities constitute 15% of the out-of-school population and 
face complex barriers requiring special software [104]. For example, students with a 
sensory, physical or intellectual disability are 2.5 times more likely to have been out-
of-school in comparison to their peers without disabilities, possibly due to lack of 
adapted infrastructure and materials and because of the known link between disability 
and poverty [43]. In this sense, assistive technology can determine participation in 
society or marginalization. 

Research indicates that while many current AI education systems originate 
predominantly in developed nations, learners worldwide face varying educational 
contexts and challenges. Studies suggest that more inclusive development approaches, 
incorporating diverse global perspectives and contexts, may lead to more effective 
and equitable systems [17]. Human agency is required in the design and development 
of AI systems; learners must be placed at the epicenter of these designs, giving 
humans the ability to scrutinize them (e.g., by querying their biases and beliefs, 
changing the optimization goals and addressing the algorithmic bias).  The human-
computer loop should also revolve around less-than-ideal scenarios based on ill-
defined datasets from imperfect settings and should engage all stakeholders in the 
design process.  

Assessment of students’ performance is key to equitable distribution of resources 
as student evaluation is critical to tracking the digital divide. A key problem in 
assessment is to estimate how well students have mastered each knowledge 
component/concept/skill. Assessment in traditional classrooms involves a cessation of 
teaching, i.e., teach, stop teaching, give a test, resume teaching. AI systems offer 
alternatives to traditional assessment through what Shute & Ventura (2015) describe 
as 'stealth assessments,' which analyze student interaction logs to help evaluate skills 
and knowledge in real-time. Assessment and evaluation can occur alongside learning 
activities, e.g., online teaching while the system tracks various factors such as 
performance, emotional states, and motivation [34]. However, the effectiveness of 
such approaches may vary depending on context, student population, and 
implementation quality and the accuracy and reliability of such tracking may vary 
significantly across different implementations.  Intelligent platforms provide a 
variety of pedagogical styles (videos, explanations, narratives) and can assess a 
student’s learning needs in real-time and immediately supply necessary 
activities.  AI systems take advantage of data collected from traditional assignments 
(problem sets, laboratories), exercises and tests. Many AI systems incorporate 
assessment capabilities as part of their lesson optimization features [34], though the 
effectiveness of these tools appears to vary based on factors such as subject matter, 
student level, and implementation context. 

3.2   Diverse, Ethical, and Inclusive  

Another feature of adressing the digital divide is to incorporate diverse perspectives 
that contribute to more inclusive learning environments. When learners from varied 
backgrounds see their experiences represented, they may feel more engaged in the 
learning process [35, 72]. Culturally responsive education respects, values, and 
incorporates learners’ diverse cultural backgrounds, experiences, and perspectives. 
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Cultural backgrounds may influence how students engage with and interpret 
educational content and can play a significant role in shaping learning experiences, 
though the extent and nature of this influence may vary across different contexts and 
individuals [35]. Cultural sensitivity and inclusivity require understanding and 
appreciating different backgrounds, traditions, and perspectives without imposing 
one’s own beliefs or values. Inclusive practices promote a sense of belonging, equity, 
and equal opportunity for everyone, regardless of their cultural or social identity.  

Providing diverse, ethical and inclusive education involves creating open dialogue 
spaces, ensuring diverse representations while designing and developing these 
systems, fostering cultural competences and encouraging open communication [72]. 
Recognizing the intersectionality of identities (e.g., race and gender) can break down 
bias and discrimination. Collaborative initiatives and fostering a culture of continuous 
learning encourages individuals to seek new perspectives and stay informed about 
different cultures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Three students collaborate in-person while a computer facilitates sharing. Multiple 
users add content simultaneously and use presentation software (slides) and online 
whiteboards to support brainstorming of visual ideas, drawing diagrams. Roles and 
responsibilities are clearly defined to ensure effective contributions; open communication 
and active listening are required. 
 

Designers and developers of instructional systems need to support and engage 
learners’ rich cultural identities and cultural signatures to express their cultural 
identities [72]. Maker stakeholders (researchers, developers, commercial companies) 
should intentionally think about meaningful ways to honor and actively engage 
learners’ rich cultural backgrounds and include features and experiences that support 
and enable learners to draw on their cultural identities. 

Many educational systems face ongoing challenges with equity, inclusivity, and 
accessibility. Approximately one in four 15-year-old students report feeling like 
outsiders at school [103], though experiences may vary significantly across different 
educational contexts and cultural settings. Accessibility is a large part of the problem, 
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because education is not available to all students for many reasons.  For example, 
30% of students in the Dominican Republic report feeling like outsiders due to 
language differences in a country that is one of the most linguistically diverse in the 
world and where educational systems do not always account for this [79]. Many 
countries still practice segregation in their educational systems, especially for students 
with disabilities.  

Studies have identified various ethical challenges, including documented cases of 
data breaches and privacy concerns [82]. Access to educational technology continues 
to show disparities across different socioeconomic groups and regions, though the 
extent and impact of these disparities may vary. Maker stakeholders are generally 
aware of these issues, e.g., several AI and education publishers require an ethics 
statement before papers are published. However, more effort is needed to ensure that 
basic system components are ethical and that students are mutually respected.  

Ethical systems also require addressing data privacy, bias, discrimination, and 
social impact. AI systems collect a great deal of information about learners, e.g., 
personal information, performance data during learning, and log data of interactions 
(questions posed, hints requested). Maker stakeholders need to ensure that their 
systems maintain data privacy in all communications, just as it is required for all 
teachers. Student data must be kept private in general communications and kept 
anonymous in publications. Fairness is another concern, requiring that computer 
tutors be fair to individuals, groups and communities. This means maker stakeholders 
must avoid favoritism during development, support academic integrity (data privacy) 
and not allow exploitative labor practices, inequitable access to technology or the 
potential for copyright infringement. They must also promote equality and non-
discrimination among learners. Bias is a large issue for AI systems and comes in part 
from training large models; if a system is trained on a narrow segment of the 
population (e.g., a dataset constrained to a single gender, race, or culture) then this 
system’s reasoning and responses will be biased (e.g., consistently using male 
pronouns to describe professionals). Also deep learning models developed by biased 
systems will propagate bias throughout tutoring problems, answers, and responses. To 
avoid educational inequality, AI systems should be trained on a diverse and inclusive 
set of learners (e.g., maker stakeholders should themselves be diverse in gender, race 
and culture) and deployed inclusively across nations.  

Certain limitations in AI educational systems might potentially affect educational 
opportunity gaps and these effects could vary significantly across different contexts, 
with some regions potentially experiencing more pronounced impacts than others 
[17]. Factors such as connectivity, content quality, and local capacity appear to 
influence outcomes [70]. Good connectivity, quality content, and capacity building 
are necessary but not sufficient to support enhanced education in remote locations 
[70]. AI systems might propagate dangerous biases at scale and divert educational 
resources that could be put into more effective classroom use [17]. Other challenges 
include availability of quality data, fact-checking, learner modeling, and transparency 
of these systems. Political power is also a serious challenge as people who possess the 
technology might impact others negatively or exert control. 

 

Interaction Design and Architecture(s) Journal - IxD&A, N.64, 2025, pp. 28 - 62 
DOI: 10.55612/s-5002-064-001sp

45



4.  Global Learning Communities 

A third grand challenge for AI and education is to support global learning 
communities. International partnerships can play an important role in supporting 
education, particularly in developing countries [72]. Well-designed and properly 
implemented partnerships may help demonstrate shared responsibility, strengthen 
international bonds, and work toward reducing inequality, though research suggests 
results vary significantly based on local contexts and implementation approaches.  

4.1  Collaborative Problem Solving 

One feature of global learning communities is that they bring together individuals 
with diverse skills and perspectives to address complex challenges [72]. Studies 
indicate that team diversity may enhance creative outcomes under certain conditions, 
while design thinking principles typically incorporate practices such as empathizing 
with end-users, defining problems, and prototyping - though effectiveness can vary 
across different contexts and cultures. Strategies include team diversity, clear problem 
definition, design thinking, brainstorming sessions, structured collaboration tools, role 
assignments and active listening.  

Social and collaborative platforms are essential for creativity. Online collaborative 
spaces (e.g., Zoom, Slack) now support remote teams and individuals to work 
together.  AI provides social support and gracious cues normally offered only by in-
person collaborators. To work well, these platforms require high-quality 
communication (e.g., not requesting that users respond to messages or press buttons 
while expressing themselves creatively). Good collaborative interfaces will limit 
interference from the tool while users are working or expressing their creativity [114]. 
AI tools should support sensory, precognitive, cognitive, ergonomic, behavioral and 
social abilities, e.g., users can easily find a screen or template to enter a note. Many 
remote collaborative interfaces have these features and are now well deployed (e.g., 
Zoom, Google Meet, Microsoft Team).   

Systematic frameworks can be provided in every country to remove barriers for all 
learners: ‘every learner matters and matters equally’ [2]. Inclusion is a prerequisite for 
sustainable societies and for democracies based on fairness, justice and equity. The 
benefits of inclusive education are hard to quantify, as they extend over generations, 
but they include improved academic achievement, social and emotional development, 
self-esteem and peer acceptance, as well as preventing stigma, stereotyping, 
discrimination and alienation [94]. Accessibility and inclusion are a foundational 
approach and the epicenter of education technology design. Computer solutions that 
do not address the deeper barriers of exclusion and inequity can only go so far 
towards improving learning outcomes. 
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4.2  Benefit More Students 

Another feature of global learning communities is to extend educational reach beyond 
traditional methods and to provide high-quality education to almost eight billion 
people. This requires more than purely technology-centered solutions; it requires 
future-oriented visions of connected social and technological solutions [39]. One goal 
is to ensure that every learner has access to high quality AI tools that are suitable and 
beneficial. Another goal is to ensure that every learner has access to high quality AI 
tools that are suitable and beneficial. The effectiveness of global communities varies 
significantly based on factors such as infrastructure, teacher training, and local 
context. Significant challenges remain in ensuring equitable access and appropriate 
implementation. In prior studies, students using intelligent tutoring systems (ITSs) 
outperformed students from conventional classes in 92% controlled evaluations, and 
the improvement in performance was great enough to be considered of substantive 
importance in 78% of the studies [51]. Reports of improvement in student 
comprehension, engagement, attitude, affect, motivation, and academic results have 
contributed to investment in and research about these systems. ITSs are roughly 
equivalent to an improvement in test performance from the 50th to the 75th percentile 
and can improve the learning gains for average students by two standard deviations (2 
SD), a measure of how far each student’s score lies from the mean [51]. Two standard 
deviations indicate that values are clustered close to the mean or that a majority of 
students learned the material. This is stronger than typical effects from other forms of 
teaching and about twice as high as results from non-intelligent computer aided 
teaching systems.  

To enhance the benefits of AI for more students, hidden human coaches might be 
used to improve the competency of these systems under special circumstances. For 
example, human operators might be included as “hidden coaches” who monitor 
interactive instruction during the training period for the ML components with 
different classes of learners. Hidden coaches would be situated with learners to guide 
and help the AI systems to complete their assigned tasks, remotely seeing the tutoring 
session through the eyes of the computer tutor and performing relatively simple tasks. 
Scientists would collect and analyze gathered data especially for different classes of 
learners and make critical creative decisions about which alternative actions the 
environment might take next. The hidden coaches do not take the place of actual 
human teachers; they’re doing reconnaissance work to clear a path for the AI system 
to eventually improve its teaching. 

Some intelligent instruction is available on open frameworks in which all code is 
freely available [90]. This supports transparency and democratization, as many 
scientific discoveries depend on both technological prowess and user studies. Such 
transparency also improves efforts towards understanding the ethical and fairness 
aspects of AI mass adoption. Open-sourcing is a trivial enabler and provides utility of 
AI tools in developing nations [17]. However, open-sourcing is not a magic enabler, 
as complex knowledge transfer is needed to build both operational and human 
capabilities to work with cutting-edge tools. Global collaborative ventures and earnest 
capacity building are required in AI to avoid falling back to techno-solutionism, or the 
idea that technology can solve all social, political, and access problems [29].  
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Fig. 8. Lifelong learners use informal learning tools and location-based delivery of content 
to identify plants. 

However, many limitations and risks remain for using AI systems in educational 
settings. AI systems are not effective with questions that require subjective judgment 
or opinion, such as matters of personal taste, ethics, or moral dilemmas [78]. These 
types of questions often lack a single correct answer and AI systems do not yet 
discuss human qualities such as idea generation, intuition, cultural sensitivity, 
emotions and common sense. A serious limitation of ITSs is that they provide easy 
and frequent feedback and hint sequences, and some students will immediately turn to 
hints before attempting to solve problems or complete tasks [99]. Students might 
bottom out the hints – request as many hints as possible as fast as possible along with 
answers – to complete tasks faster.  A second limitation is that these systems do not 
ask students to explain their actions [98]. If students are not engaged with online 
tutors it becomes more difficult for the AI system to gain a deeper understanding of 
students’ learning.  Students who can’t explain their knowledge become opaque to 
AI systems. A third limitation is that ITSs are focused on instruction and not typically 
involved in student motivation or social-emotional learning [96]. All these limitations 
are being addressed in recent research with LLMs and solutions should be 
forthcoming, e.g. researchers are using LLMs to create question answering systems 
[60], multiple choice questions [20], essay scoring [105], supporting critical thinking 
[105] and solving math word problems [59]. 

4.3  Lifelong Learning 

A final feature of global learning communities is to support learning continuously 
over the entirety of one’s life (lifelong) and across all aspects of that life (lifewide). 
This refers to adapting resources to a persons’ level of understanding, in ways that are 
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highly relevant to each learner and doing so throughout life.  AI can provide 
authentic learning opportunities that blur the distinction between learning and life, 
promoting the joy of learning. Many individuals do not participate in any meaningful 
learning after formal schooling ends and many others have only sporadic and highly 
interrupted patterns of engagement. These inequalities are highly dependent on an 
individual’s age and stage of life, as well as patterned in terms of income, gender and 
social class [49, 55]. 

Career development in the information age may be measured as much by the 
acquisition and development of knowledge, as it is by the rank and title of each 
particular job [44]. In this context, “career,” metaphorically, can be characterized as a 
repository of knowledge [12]. Animated and AI-based agents might motivate users 
based on age, economic, or cultural considerations [58, 91, 95]. Agents have taken 
on authentic role models as virtual learning companions and have promoted positive 
attitudes to build up a learner’s self-efficacy [53]. They might request particular topics 
and knowledge components on behalf of their adult users provide complete models of 
their adult users; e.g., agents orchestrate their own interactions and adapt to the 
learner’s characteristics (e.g., cognitive ability, previous skills, culture) and their 
needs (disabilities, learning difficulties). Learners can call upon virtual characters as 
virtual teachers and companions [15, 91]. These characters are not only 
knowledgeable, they also carefully reflect the characteristics of people they model. 
Agents might enhance teachers’ professional development and best practices training 
for job advancement, recreation or instructional skills-based learning support lifelong 
learning (longitudinal), and ubiquitous (embedded) experiences [47].  

Persistent interfaces adapt to learners across life transitions and stages. Early 
research suggests that AI systems may develop detailed learner profiles over time, 
though the extent and accuracy of such knowledge requires further investigation. The 
effectiveness of these tools varies based on factors such as user engagement, data 
quality, and system design.   

5.  Data-driven Decision Making 

A fourth and final grand challenge for AI and education is to make strategic 
educational decisions based on data, e.g., student learning rate, questions asked, and 
inferred knowledge.  

For example, data-driven tools might identify students at risk, challenge students 
who seem bored, guide teacher professional learning by identifying areas of curricula 
difficulty, support budgetary and policy change, and promote transparency. Data 
analytics in education is crucial for improving learning outcomes and processes [72]. 
For example, huge quantities and high-quality student data support examination of 
learning results, new instructional design, and reimplementation of platforms based 
on identifying (in)effective problems. Data-driven tools collect and organize data, 
analyze and interpret it, evaluate and improve it, and communicate data to teachers 
who can apply it while interacting with students. ML based on data utilizes different 
algorithms to analyze data and deliver a better model of teaching and learning. 
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5.1  Predictive Analysis 

One feature of data-driven decision making in education is to use predictive analysis 
to determine and predict student and class outcomes using data. AI research provides 
novel approaches for predicting student outcomes using visual and tabular cues, 
though these predictions may vary across different educational contexts and student 
populations. Predictive analysis contributes to traditional classroom prediction 
methods, e.g., teacher observations, formative assessments, and student self-
assessments. Predictive AI involves statistical analysis to identify student patterns, 
anticipate behaviors and forecast performance. It can anticipate a learner’s response 
(e.g., whether a student will solve a problem, ask for hints, quit, guess) and provide 
response material before learners become discouraged or blocked [8, 104]. Early 
prediction of performance while students work online is crucial for providing timely 
and effective interventions, potentially improving student engagement and motivation 
and ultimately enhancing their learning [45]. Administrators use advanced analytics 
and machine learning algorithms to gain insights into class-level performance, to 
identify student difficulties, to make policy decisions, and to allocate resources more 
effectively [11]. For instance, studies by Yağcı et al. (2022) and Maghsudi et al. 
(2021) found correlations between specific factors (e.g., extracurricular participation 
and learning styles) and academic performance. This helps to identify areas for 
improvement for instructional systems, factors that contribute to dropout rates and 
interventions that support struggling students.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Data-driven decision making based on statistical analysis is used to identify patterns 
in a student’s learning, anticipate behaviors and forecast future events. Teachers share data 
with the student about her learning. 

In one study examining student performance data, Battula (2023) found that linear 
regression achieved 88% accuracy in predicting student results. Educational data 
mining, while still an emerging field, attempts to identify relationships within 
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educational data to better understand factors influencing academic achievement. For 
example, Yağcı et al. (2022) applied various machine learning algorithms to predict 
undergraduate midterm grades, achieving varying levels of success depending on the 
specific algorithms and contexts used. The performance of several ML algorithms 
(random forests, nearest neighbor, support vector machines, logistic regression, Naïve 
Bayes, and k-nearest neighbor) were calculated and compared to predict students’ 
final exam grades. In this example, the dataset consisted of the academic achievement 
grades of 1854 students who took the Turkish Language-I university course [107]. 
Results show that the proposed model achieved a classification accuracy of 70–75% 
using only three types of parameters: midterm exam grades, department data and 
faculty data. Such data-driven studies establish learning analysis frameworks in 
higher education [50]. Clearly, such studies also help predict students at high risk of 
failure. However, predictive models have limitations and should be used as one of 
multiple tools in educational decision-making; different analytical approaches may be 
more appropriate in other settings or with different types of educational data.  

In another example, a facial expression recognition system predicted student 
outcome in solving online math problems after analyzing only the first several 
seconds of each student’s behavior. While students used an intelligent tutor platform, 
their behavior was captured in a video feed (videos of students interacting with the 
online system), along with timing information obtained from their learning log 
(student keystrokes) [27, 57, 108]. This multimodal approach predicted student 
exercise outcomes by analyzing the first k seconds of student video, where k was set 
to be as small as 5 sec and as large as 20 sec.  

This team extracted facial affective embeddings from video frames using transfer 
learning and analyzed their temporal dependencies using a Transformer [84, 85]. The 
timing information about when students take certain actions (e.g., request a hint) was 
combined with video representations, enhancing the model’s ability to predict student 
performance quickly. Initial studies suggest promising results compared to existing 
baselines when tested on specific student datasets. Moreover, due to the complex 
nature of student behavior, achieving high prediction performance has proven 
extremely challenging for these approaches. Even human observers demonstrate low 
accuracy predicting exercise solving outcomes solely from video, indicating the need 
for accessing additional information to improve prediction accuracy. 

While these findings indicate potential for early outcome prediction, further 
research across diverse student populations and learning contexts is needed to validate 
preliminary results and to understand their broader applicability. 

AI’s ability to predict student performance is limited and depends on the nature of 
the available data. While AI can analyze patterns in historical data and make informed 
forecasts in certain domains, predicting complex and dynamic events about students’ 
learning remains challenging.  For example, family and home events, health, 
evolving circumstances, and the inherent uncertainty of human behavior make 
predicting student outcomes difficult. The effectiveness of these tools depends heavily 
on data quality, implementation context, and integration with existing educational 
practices.  
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5.2  Model Teaching and Learning  

Another feature of data-driven educational decision making includes models that are 
generalizable across learning content, learners, and learning scenarios. One goal is to 
develop models that represent and analyze learners (e.g., knowledge level, learning 
pace), teachers (pedagogy, teaching style) and their interactions. This approach 
combines both cognitive science and learning science theory and data-driven 
modeling. For example, one research team is developing LLM-based simulated 
learner agents that effectively mimic the behavior of real learners [62]. The benefit of 
such a model is to provide a proxy of real learners from any background and under 
any learning context. Teachers and tutors can practice tutoring strategies with such a 
model and can identify best pedagogical practices and content designers can test the 
quality and difficulty of new learning content and assessment/practice questions and 
even evaluate new curricula. Key AI strategies are learning analytics, early 
intervention systems, individualized learning paths,  predictive analysis, inclusion 
and equity metrics, and a culture of continuous improvement.  
 
Understand Learner Deficiencies. One key limitation for existing learner models, is 
that they typically analyze and predict binary-valued learner responses to questions, 
i.e., the correctness of the response. As a result, this approach loses important 
information since it ignores the exact (mostly textual) content of questions and learner 
responses, especially for open-ended questions. One goal is to predict learner 
deficiencies and to generate open-ended answer responses that utilize this missing 
knowledge, hoping the student will recognize and focus on the text. For example, one 
research team combined learner models that produce latent learner knowledge 
representations with the generative nature of LLMs [32, 111]. In a computer science 
education setting this model effectively captured students’ specific coding bugs and 
styles and was able to steer LLMs towards generating computer code, especially 
incorrect code, in a way that mimicked each individual learner. This is a step towards 
personalizing LLM output to each individual learner to cater to their background, 
knowledge levels, goals, and needs.  
 
Make Errors. LLMs are trained on clean, high-quality textual data, which makes it 
difficult for them to understand human errors, let alone generate output with these 
errors in a controllable way. One research team set up an LLM to generate 
mathematically valid distractors as components of multiple choice questions, i.e., a 
possible solution that is a sensible result of flawed mathematical reasoning 
[31].  The group studied the problem of automatically generating incorrect options, 
utilizing the question’s stem and key. The team found that LLMs are better at 
generating distractors, than understanding what errors real learners actually make.  
 
Enhance LLMs’ Capability in Math. LLMs perform well on a wide range of natural 
language generation tasks, but less so on mathematical ones that require rigorous 
reasoning and precise calculations. One research team developed MathGPT, a 
modification to GPT’s architecture to encode and decode mathematical expressions as 
operator trees [87]. MathGPT improves LLMs’ ability to represent mathematical 
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content and their ability to plan their reasoning processes. The team discovered ways 
to improve the validity of GPT’s generated mathematical expressions.  
 
Question Generation. Historically, educators thought that to create a “level playing 
field” for all learners, they would assign the same standardized question to each 
learner. However, this approach fails to account for the variation in individual learner 
characteristics (e.g., learning level, construct representation and language skills). 
Providing similar questions does not address the well-documented problem of 
decaying learner interest in math, which may prevent them from pursuing science 
related careers. Personalizing questions for each individual learner, i.e., changing the 
language complexity, consistency, topic, and other features of a math word problem 
while keeping its underlying mathematical elements fixed, presents a viable solution 
to this problem. One research team developed a tool for the controllable generation of 
new math word problems given a specified problem context, represented as keywords, 
and an underlying math equation [100]. 

6.  Discussion and Conclusions 

This article proposed four grand challenges for AI and education, including 
pedagogical innovations, addressing the digital divide, global learning communities 
and data-driven decision making. Several approaches and tools were described that 
show promise in educational contexts to support, not replace, teachers, administrators, 
policy makers and other education stakeholders. Several challenges were identified 
along with limitations and risks for each challenge and the broader impact of each 
challenge on stakeholders.  

Research in this field is driven by the fact that education impacts each individual, 
both in terms of increased knowledge and earning power. For example, a typical 
worker in the United States with a bachelor’s degree earns 80% more than does a high 
school graduate [18]. Additionally, a country that does not leverage the enormous 
payoff for investment in pre-schooling is deficient in its approach to education. The 
payoff in pre-schooling can be measured in improved college success, higher income, 
or even lower incarceration rates. Pre-schooling addresses some inequities that begin 
at birth (resulting from rich/poor parents) and improves the lot of disadvantaged 
children as they grow. Difference in cognitive performance between rich and poor is 
just as big at age 18 as it is at age 3, before students enter school. Thus, income 
inequality is passed down through generations.  Humans not only learn and create, 
but they do so continuously while generating new ideas [65]. This elusive gift 
includes the possibility to invent everything and to go beyond the ability to solve 
isolated problems. AI techniques have already extended the success of today’s 
learners in individual studies and might empower learners everywhere. While the 
findings in this article indicate potential for education, further research across diverse 
student populations and learning contexts is needed to validate these results and to 
understand their broader applicability. 

AI techniques challenge, and possibly threaten, existing educational practices by 
suggesting new ways to learn [68]. Yet, technology can’t impact education in 
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isolation; rather it operates as one element in a complex social and political system 
that must consider content, pedagogy, and the environment that students, instructors, 
and technology co-create [77]. The AI community has historically designed systems 
to challenge human ability; AI systems were first developed to win against Go or 
chess masters and AI tools ultimately replaced radiologists, real-time translators and 
web designers. That old AI paradigm of developing technology to perform better than 
humans has been replaced by a paradigm to support humans to work better with AI 
systems, to keep the human-in-the-loop, shifting the focus from surpassing or 
replacing people to working and learning better together [65]. 

Many limitations of this review article should be considered. For example, this 
article describes what we may call "lab experiments" that were carried out on specific 
tasks in specific contexts (although carried out with real students in real classes). One 
overarching challenge is to move these experiments beyond the realm of isolated 
projects in which each research team develops idiosyncratic conceptual frameworks 
and methods [26] and to enable technologies to become largely diffused and adopted. 
One exception to the statement that this field has only produced “lab experiments” are 
LLMs that have not been realized and experimented with in educational contexts but, 
rather, have been adopted world-wide by teachers and learners. This discussion is not 
exhaustive and additional challenges and tools should be considered. 

 Intelligent instructional tools have not been combined in large scale nor in optimal 
ways for education; they often provide single fixes or add-ons to single classroom 
issues. Scientists must not fall back on techno-solutionism, in which technical 
solutions overlook human complexity; humans need to be kept in-the-loop. For 
example, maker stakeholders (researchers, data scientists, computer scientists) are 
needed to guide design and development of systems towards making them 
commercially viable. On the other hand, user stakeholders (students, teachers, 
parents, administrators) are needed once a tool is built to evaluate it, to identify 
(in)efficient or (in)effective components and to assess learning results. Cycles of 
design and development help evaluate the impact of AI on education, foster 
ownership and build trust (assuming these systems deserve trust), and move the field 
from prescriptive algorithms to human-centric and impactful partners.  

Although many challenges remain, they are relatively unrestricted and can be 
addressed without stifling stakeholder creativity and innovation. Powerful AI tools 
hold great promise for enhancing education, improving human capabilities and skills, 
and shaping a better global world. Even before this research gets translated and 
deployed in society—via products and services—human factors, ethics, and diversity 
come into play. AI and education is a powerful new field and its omnipresence 
provides potential innovation and transformation. As we stand on the brink of this 
new era, we have immense responsibility to harness AI and education for the common 
good.  
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