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Abstract. This study investigates the integration of machine learning and 
architectural lighting design by proposing a proof-of-concept adaptive lighting 
system driven by human actions and spatial position. A custom video dataset was 
created based on five actions—standing, sitting, walking, running, and dancing—
and three positional categories within a defined space. Two different machine 
learning approaches were evaluated for human action recognition: a skeleton-
based model using MediaPipe pose extraction with an LSTM architecture, and a 
pixel-based approach combining feature extraction from raw video frames with 
an MLP classifier. The classified action and position data were mapped to pre-
defined lighting schemes generated parametrically using Grasshopper, enabling 
context-aware lighting recommendations. The results show that while action 
classification accuracy is limited due to dataset size, position recognition 
achieves high reliability. The study highlights the potential of action-oriented, 
human-centered lighting systems and outlines directions for future research 
involving larger datasets and user-centered evaluations. 

 

Keywords: Machine learning, Human action estimation, Motion-based lighting 
interaction, Spatial lighting control, Adaptive lighting systems. 

1   Introduction. 

In architecture, space is not merely a physical environment; it is a structure that gains 
meaning through the movements and actions of its users and is constantly changing. 
While the perception of space is shaped by human movement, space also shapes human 
movement. This relationship is particularly important for human-centered design 
approaches. Another fundamental element that influences the perception of space is 
lighting. Therefore, a well-designed lighting system not only provides visual comfort 
to the user but also determines the person's orientation, emotions, and the atmosphere 
of the space. For this reason, in the development of both interactive and human-centered 
architectural design, the perception of movement within space, along with the 
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development of lighting schemes appropriate to human actions, makes an important 
contribution. 

In this study, movement is not only a physical action but also a fundamental element 
in the experience of space. The user's position during walking, running, and sitting 
actions reflects their relationship with the space. In this context, movement not only 
guides spatial organization but also creates important data for environmental control 
elements. Therefore, this study lies at the intersection of architecture, interaction 
design, and intelligent environments, and uses machine learning models (such as LSTM 
and MLP) to analyze and utilize human movement data. In this way, the system directs 
an adaptive lighting system using such data. This contribution is consistent with a 
human-centered and context-aware understanding of spatial control. 

In line with this approach, human actions were detected in a defined space, the 
location of each action was determined, and then a machine learning model was 
developed to match each action type with specially prepared lighting schemes. The aim 
is to contribute to the integration of variable and interactive lighting solutions based on 
user actions into architectural design processes. 

A dataset was created by recording five basic actions—standing, sitting, walking, 
running, and dancing—involving different participants across multiple spatial settings. 
Trained models were used to identify movements in the space and determine their 
positional information. Lighting schemes were generated for each movement class and 
position combination. Subsequently, the action and position information were 
integrated with the appropriate lighting schemes. The study aims to incorporate 
artificial intelligence into architectural design processes by primarily focusing on user 
movements in a space and enabling the creation of interactive and variable lighting 
scenarios. 

The expected outcome of this work is to detect different actions performed in a space 
and their locations using artificial intelligence and then match them with lighting 
schemes appropriate to the action types based on these detections. Thus, the role of the 
user in the design of architectural systems is examined using different algorithms. The 
contribution of this study to the field is to explore ways to enrich the user experience in 
different spaces through a motion-oriented lighting approach, conveying the potential 
of machine learning in the design of environmental control elements in architecture. 
Therefore, acting as a proof-of-concept, this study demonstrates the feasibility of 
bridging the gap between human action data and adaptive lighting control systems 
through machine learning approaches. 

This proposed adaptive lighting control system supported by machine learning can 
be useful from both the designer’s and the user’s perspectives. Even though lighting 
design is an important component in architecture and interior design practices, it 
requires specialized expertise that general practitioners may lack. Consequently, 
architects can utilize this system as a design decision-support tool. It can guide 
architects in choosing appropriate lighting types, lux values, and color temperatures 
according to spatial function. From the user’s perspective, in cultural and social spaces 
(museums, galleries, classrooms, offices, therapy centers, etc.), this adaptive system 
adjusts lighting parameters to increase user comfort and reduce energy waste. 
Moreover, this human-centric adaptation enriches personal experiences in spaces 
dedicated to well-being, such as meditation centers, as well as domestic settings. 
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2   Literature Review 

2.1   Human Motion Capture and Machine Learning 

Human motion estimation and recognition have become central research areas in 
computer vision, robotics, and artificial intelligence. Early approaches typically relied 
on physics-based models such as constant acceleration or minimum-jerk models, often 
combined with Kalman filters. However, these methods proved insufficient for 
providing reliable uncertainty measurements for complex human movements [1].  

To overcome these limitations, data-driven models utilizing probabilistic and deep 
learning techniques have increasingly gained traction. Gaussian Mixture Models 
(GMM) have been widely used for goal recognition and trajectory estimation. Task-
parameterized formulations and online expectation–maximization algorithms have 
demonstrated GMM’s potential for adapting to new trajectories. Hidden Markov 
Models (HMM) have also emerged as a dominant tool for the stochastic representation 
of human movements and incremental updates. Furthermore, Dynamic Time Warping 
(DTW) and generalized time warping methods have been proposed for aligning 
multimodal sequences, but they have shown limitations in online applications [1]. 

More recent studies have turned to deep learning models that directly learn 
spatiotemporal dependencies from skeletal data. For example, Bütepage et al. [2] 
presented a deep representation learning framework based on an encoder–decoder 
architecture and demonstrated that it can generalize well even to unseen movements. 
Martinez et al. [3] examined recurrent neural networks (RNNs) for human motion 
prediction, revealing that LSTMs and GRUs can capture temporal dependencies, but 
that simpler approaches sometimes perform better for short-term predictions. Similarly, 
Kanpak and Arserim [4] applied deep learning methods for human pose estimation, 
highlighting the importance of joint detection and skeleton-based modeling for accurate 
classification in complex spatial contexts. Chen and Xue [5] showed that a CNN trained 
on tri-axial accelerometer time-series data can automatically learn features and achieve 
approximately 93.8% accuracy, thereby removing the need for manual feature 
engineering and simplifying the mobile pipeline. In another study in the field of human 
motion detection, Song et al. [6] recorded lower-limb movements with a portable sEMG 
system—a method that records muscle electrical activity with electrodes on the skin—
extracted simple time-domain and frequency-domain features, and compared MLP and 
LSTM models. They found the best results (MLP ≈ 95.5%, LSTM ≈ 96.6%) using 
combined time- and frequency-domain features [6]. 

Beyond classification, regression and machine learning approaches based on 
skeleton data have also been used in predictive modeling. A recent study demonstrated 
that various algorithms, such as Support Vector Machines (SVM), Random Forests, 
and deep neural networks, are effective in predicting human movements based on 
skeletal data and are applicable in fields like virtual reality and security systems [7]. 
Collectively, these studies reveal the evolution from manually extracted features to 
deep learning frameworks that can better capture the variability and complexity of 
human movement. 
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2.2   Lighting and Machine Learning Applications 

Parallel to developments in motion prediction, research has also been conducted on 
integrating human activity recognition into smart lighting control systems. The basic 
principle is that appropriate lighting conditions, including color temperature, depend 
on human activities, and therefore these systems need to recognize activities and 
provide an adaptive response. 

Chun and Lee [8] proposed an intelligent lighting control framework based on 
motion tracking using depth and thermal cameras. This system was able to control 
lighting levels and color temperature based on real-time activity prediction, aiming to 
achieve energy savings and user comfort simultaneously. Building on this work, Chun 
et al. [9] developed a real-time lighting control method that uses multiple camera 
systems and determines human location from depth images through inverse perspective 
mapping. The system recognized different activities such as working, chatting, and 
watching television, providing appropriate lighting conditions while also utilizing the 
energy efficiency advantages of LED-based lighting. 

These approaches emphasize both energy efficiency and user comfort. For example, 
activity-based LED lighting systems not only reduce energy consumption but also 
enhance user well-being by adjusting the color temperature to suit different tasks [9]. 
Distributed lighting systems and gaze direction detection further increase adaptability, 
enabling context-aware control in living spaces. 

Gopalakrishna et al. [2] developed context-based intelligent lighting models for 
“breakout areas” in office environments. Synthetic data were generated using a 
probabilistic model that considered six features: user identity, activity type, number of 
users, activity area, time of day, and external light conditions. Various classification 
algorithms were then tested, and the study noted that the DecisionTable algorithm 
achieved the best performance in predicting user preferences. 

Putrada et al. [10] reviewed the smart lighting literature and emphasized that 
machine learning methods play an important role in improving user comfort. They 
reported that supervised learning, clustering (K-means, DBSCAN), deep learning 
(CNN), and reinforcement learning methods have been applied in different contexts. 
Parameters such as light usage rate, unmet comfort rate, Kruithof’s comfort curve, 
correlated color temperature, and flicker perception were used to measure user comfort. 

A review of the literature generally shows that machine learning applications in 
smart lighting systems offer significant contributions to both energy efficiency and user 
comfort. Camera- and sensor-based activity recognition approaches [5,8], classification 
models based on contextual data [2], and supervised, unsupervised, and reinforcement 
learning methods highlighted in systematic literature reviews [10] reveal diverse 
orientations in this field. Collectively, these studies indicate that integrated lighting 
solutions that more accurately predict user behavior while simultaneously optimizing 
comfort and energy savings can be developed in the future. 

2.3   Research Gap 

Although significant progress has been made in the fields of human action prediction 
and smart lighting, research examining the integration of these two areas remains 
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limited. Studies on motion prediction have mostly focused on trajectory prediction and 
activity recognition in domains such as robotics, security, and human–computer 
interaction [1,11]. Similarly, smart lighting research has generally concentrated on 
inferring broad activity modes using sensor networks or vision-based tracking methods 
[8,9]. However, studies that directly combine detailed motion classification with 
dynamic lighting control remain scarce. 

This gap highlights the novelty of approaches that explicitly link human motion 
recognition and location tracking to machine learning–based adaptive lighting systems. 
By bringing these two fields together, smart environments capable of responding to 
human behavior in real time while also optimizing energy performance may become 
feasible in future applications. 

3   Methods 

A two-stage method was applied to both models used in the study. In this method, a 
machine learning model was first trained with a dataset grouped by action class. Then, 
the lighting schemes corresponding to this action class were selected, and the results 
were generated. As a preliminary test, experiments were conducted with various 
publicly available datasets. In previous studies, the UCF101 [12] and UTD-MHAD [13] 
datasets, as well as videos from Pexels [14], were used. Variations in these datasets—
such as background differences, frame sizes, and whether the entire action was captured 
within the frame—prevented the trained model from accurately predicting motion in 
the video and resulted in significant differences in training times. 

These preliminary experiments led to the establishment of dataset criteria. According 
to these criteria, a fixed background and multiple variations of the same action 
contributed positively to the model’s accuracy and learning efficiency. 

For the main experiment, a dataset was prepared based on these. Two different 
models were trained using this dataset. The aim was to develop deep learning models 
that simultaneously predict both physical action (pose classification) and spatial 
position. This section covers the preparation and augmentation of video data, the 
preparation of lighting schemes, the training of machine learning models, and the 
prediction process using two different approaches (Fig. 1). 

3.1   Data Preparation and Augmentation 

Before the model training process, a data preparation stage was carried out. For five 
different actions (walking, standing, sitting, running, and dancing), 36 videos were 
recorded for each action, totaling 180 videos. All videos were recorded by the 
researchers and are original to this study. For each action, videos were captured at left, 
center, and right positions. The videos feature three participants to introduce variation 
in the learning process. Left- and right-positioned videos were mirrored for data 
augmentation, increasing the total number to 270 videos (Fig. 2). 
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Fig.1. Workflow of the proposed method. 

 
After these steps, the dataset was defined as a 15-class classification problem 

consisting of five different actions (dancing, running, sitting, standing, walking) and 
three different position categories (center, right, left). These classes were labeled 
manually. Interactive machine learning is normally framed in terms of supervised 
learning, a subclass of machine learning problems in which the computer is presented 
with a number of examples, each of which has a “label” representing the correct output 
of the system [15]. For example, labels such as “Running_Left” or “Sitting_Center” 
were used. Under each class directory, there were videos with .mp4 or .avi extensions 
(each video was approximately 5 seconds long). These class names were defined at the 
beginning of the code and set as a total of 15 tags. 
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Fig.2. Data augmentation workflow and class labeling. 

3.2   Lighting Proposal 

The machine learning part concludes with the classification of the action and position 
in a video. Then, pre-prepared lighting schemes are automatically selected based on the 
classified action class and positional information. For each action–location 
combination, a specific lighting view is prepared (Fig. 3). 

The light intensity and illuminated area vary for each motion class. Depending on 
whether the detected motion occurs in the center, right, or left of the space, a cross-
sectional view of the corresponding lighting scheme is presented to the user. In other 
words, the system ultimately provides the user with the following output: “In this video, 
{movement class} is being performed, and the person is in {position}. Therefore, the 
recommended lighting scheme is as follows.” The system then displays the relevant 
lighting diagram. 
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Fig. 3. Lighting schemes prepared for each action–location combination. 

3.3   Motion Classification Using Skeleton Data (First Approach) 

The first approach develops a deep learning model that simultaneously estimates both 
the physical action (pose classification) and the position of an individual on the screen 
using skeleton-based coordinates extracted from video data. Skeleton data were 
extracted using MediaPipe, an open-source framework developed by Google. This pose 
estimation solution focuses on real-time, high-fidelity body tracking and is designed to 
enable data inference from sensory inputs such as video streams or photos, making it 
suitable for rapidly prototyping perception pipelines. Due to its versatility, MediaPipe 
Pose is accessible for use within web environments, mobile applications, and across 
various platforms [16]. 

The model is built on a multi-task, multi-layered LSTM-based architecture. LSTM 
(Long Short-Term Memory) is a specialized type of recurrent neural network (RNN) 
designed to work with sequential data. It can process past information without 
forgetting it and provides robust results for time-dependent inputs. By effectively 
learning temporal dependencies among video frames, this architecture captures the 
geometric relationships of joints over time and increases the stability of joint 
predictions for moving bodies [17]. Compared to standard RNNs, LSTM architectures 
are particularly effective in modeling sequential data. 
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Data Processing for the First Approach. Thirty frames were extracted from each video, 
resulting in a total of 2,700 × 30 = 81,000 frames. The entire process of framing, 
extraction, labeling, training, and estimation was carried out on Google Colab using 
Python code. 

Action and Position Estimation for the First Approach. Videos were collected in five 
different movement classes: walking, standing, sitting, running, and dancing. Three 
position categories were created for each class: left, center, and right. Each video was 
represented by 30 fixed frames. Thirty-three body points were detected in each frame 
using the MediaPipe Pose library (Fig. 4; Fig. 5). The videos were then labeled for 
action (0 = walking, 1 = standing, 2 = sitting, 3 = running, 4 = dancing) and position (0 
= left, 1 = center, 2 = right) categories. The labels were assigned according to file names 
and checked manually. 

 

 

Fig. 4. Skeleton joint detection using the MediaPipe Pose library. 

 

 

Fig. 5. Skeleton joints detected during the standing pose. 
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The model structure consists of two parts: a pose estimation module and a position 
estimation module. Since body movements unfold as sequential data, a multi-layered 
LSTM architecture was employed for accurate temporal modeling. 

The bidirectional LSTM layer allows sequences to be read from both directions. 
Dropout layers with a rate of 30% were added to prevent overfitting. ReLU was used 
as the activation function in the hidden layers, while Softmax was employed for multi-
class prediction in the output layers. During training, the sparse categorical cross-
entropy loss function and the Adam optimization algorithm were used. The architecture 
of the proposed model is summarized in the code snippet shown below. 
 
x=Bidirectional(LSTM(64,return_sequences=True))(inputs) 
x=Dropout(0.3)(x) 
x=LSTM(64,return_sequences=True)(x) 
x=Dropout(0.3)(x) 
x=LSTM(32)(x) 
x=Dropout(0.3)(x) 
x=Dense(64,activation='relu')(x) 
pose_output=Dense(5,activation='softmax',name='pose_out
put')(x) 
position_output=Dense(3,activation='softmax',name='posi
tion_output')(x) 
model.compile( 
  optimizer=Adam(learning_rate=0.001), 
  loss={ 
    'pose_output':'sparse_categorical_crossentropy', 
    'position_output':'sparse_categorical_crossentropy' 
  }, 
  metrics={ 
    'pose_output':'accuracy', 
    'position_output':'accuracy' 
  } 
 
The dataset was divided into 80% for training and 20% for validation. During 

training, class weights were calculated and incorporated into the model to prevent class 
imbalance. Training was optimized with a batch size of 16 and for 100 epochs. 

With this structure, both human actions and their positional information in the x-
plane were estimated simultaneously. The model provides balanced information 
sharing between the two tasks, particularly due to the separate output layers following 
the ReLU layer. Since the motion and position models operate independently, each 
produces separate predictions. 

3.3   Motion Classification Using Raw Video Images (Second Approach) 

In addition to motion extraction using human skeletons, motion classification was also 
performed using raw video images. One of the main challenges in this approach was 
the high computational and memory requirements. This section describes the methods 
and optimization steps used to address these limitations. 

Interaction Design and Architecture(s) Journal - IxD&A, N.66, 2025, pp. 226 - 245 
DOI: 10.55612/s-5002-066-009

235



Using CNN + RNN for the Second Approach. Convolutional Neural Networks (CNNs) 
are deep learning architectures commonly applied in image and video recognition tasks. 
A CNN typically consists of three types of layers: convolutional, subsampling 
(pooling), and fully connected layers [18]. The architecture of a CNN is organized as a 
series of stages [19]. The convolutional and pooling layers apply local receptive fields 
and shared weights, and they can be stacked into multiple layers. Classification is 
performed through a fully connected layer at the final stage [20]. CNNs have 
advantages in local feature learning but disadvantages in temporal modeling and in 
learning effectively from small datasets. They are widely used in domains such as 
image classification (ImageNet), object detection (YOLO), segmentation (U-Net), and 
style transfer. 

Recurrent Neural Networks (RNNs) are a family of neural networks designed to 
capture sequential dependencies in time series, text, or other sequential data. They learn 
the features of temporal sequences through the memory of previous inputs in the 
internal state of the network [20]. At each step, the hidden state combines the previous 
memory with the new input, making decisions based on past information. Although 
they can process sequences of variable length, their step-by-step dependency leads to 
high GPU utilization. RNNs are commonly used in natural language processing, speech 
recognition and synthesis, time series prediction, and machine translation [18]. 

To extract features from each video frame, a pre-trained CNN similar to ResNet50 
was employed. From each frame, a 2048-dimensional feature vector was extracted. 
These features were then passed to a sequential LSTM layer to model motion along the 
temporal axis, aiming to capture the evolution of movement. However, this method 
imposed heavy computational and memory demands, as the entire sequence of frames 
was processed in every training iteration. 

To reduce computational cost, the input images were scaled and converted to a 
smaller resolution (112 × 112). In some experiments, the initial layers of the model 
were frozen (i.e., not retrained) to further decrease the computational load. 
Additionally, training data were reduced by selecting only frames from key moments 
of each video. Although these optimizations shortened training times, they also caused 
a loss of accuracy in predicting action classes and positions due to the limited size of 
the dataset. 

Feature Extraction and MLP for the Second Approach. A multilayer perceptron (MLP) 
network, which is based on a feedforward artificial neural network, was used for 
supervised learning and classification [21]. An MLP consists of an input layer for the 
initial data, one or more hidden layers to capture complex patterns, and an output layer 
to generate the final prediction [22]. 

In the first step, Keras’ pre-trained ResNet50 model was employed to extract features 
(feature vectors) from the videos. By removing the post-classification layers of the 
model, 2048-dimensional feature vectors were extracted from the final pre-
classification layer. Each time a video frame was fed into ResNet50, a feature vector 
was generated. 

Step-by-step, ResNet50 pre-trained with ImageNet data was loaded; its output was 
a 2048-dimensional vector for each frame. The model functioned solely as a feature 
extractor. For each video, the video_to_vector function was applied, with OpenCV 
reading the frames one by one. Each frame was rescaled to (IMG_SIZE, IMG_SIZE) 
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(e.g., 112 × 112), and pixel values were normalized to the range 0–1. The selected 
frames were passed through the feature extractor layer of the model, resulting in a 2048-
dimensional vector for each frame. These vectors were averaged to produce a single 
2048-dimensional fixed-size vector per video. The resulting feature vectors and the 
corresponding class labels were saved to disk in compressed .npz format, with one file 
generated for each video. In this way, precomputed features for the entire dataset were 
stored. 

This approach allowed the features to be precomputed and stored in advance. Since 
the extracted features were saved to disk, they did not need to be recomputed during 
each training iteration, which significantly reduced the computational cost. 

MLP Model and Training for the Second Approach. Pre-extracted features were stored 
to create the input array x and the label array y. These arrays were converted to NumPy 
arrays (float32 for X, int32 for y). The data were split into 80% for training and 20% 
for validation. 

A simple Multilayer Perceptron (MLP) model was defined for training. The structure 
of the model was as follows: 

● Input layer. The dimension was feature_dim (e.g., 2048), representing the 
feature vector extracted for each video. 

● Intermediate layer 1. A dense layer with 256 neurons (ReLU activation), 
followed by a 30% dropout layer to prevent overfitting. 

● Intermediate layer 2. A dense layer with 128 neurons (ReLU activation), 
followed by a 30% dropout layer. 

● Output layer. A dense layer with 15 neurons (Softmax activation), providing 
class probabilities. 

4   Results 

4.1   Findings for the First Approach 

As a result of training, it was observed that position classification and estimation were 
successful. The action training graph shows that the model was in the process of 
learning, but the learning was insufficient (accuracy < 0.95). Due to the limited number 
of videos, the learning curve fluctuated between 0.4 and 0.6 (Fig. 6). 
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Fig. 6. (Left) Training and validation curves for pose and position estimation; (Right) confusion 
matrix for pose estimation. 

In the action prediction confusion matrix, the videos were mostly classified correctly 
in the Walking, Sitting, and Dancing classes, although some misclassifications occurred 
(Fig. 6). The Standing and Walking classes were often confused due to similar body 
postures, and a similar situation was observed between the Running and Dancing 
classes (Fig. 7; Fig. 8). In the position prediction confusion matrix, the action positions 
were predicted correctly in most cases, with only four misclassifications out of 54 
videos. 

 

Fig. 7. (Left) Ground-truth video: Dancing, Right [14]; (Right) model prediction and 
corresponding lighting proposal: Dancing, Right. 

 

Fig. 8. (Left) Ground-truth video: Running, Right [14]; (Right) model prediction and 
corresponding lighting proposal: Walking, Right. 
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4.2   Findings for the Second Approach 

In the early experiments, training took a very long time (e.g., ~1 hour per epoch) 
because the model repeated all CNN operations in each epoch. In the current method, 
since the features were pre-extracted, only small-sized feature vectors were trained in 
each epoch, which reduced the computational burden. As mentioned earlier, 
precomputing the output of the pre-trained layers and saving them to disk eliminated 
the need to repeat this process during every training round. As a result, an epoch that 
previously took ~1 hour was reduced to only 2–3 seconds. This speedup was a direct 
result of completing the feature extraction step prior to training. In this way, higher 
epoch numbers were achieved, and more reliable results were obtained. After training 
for 500 epochs, the model reached an accuracy of 0.7132 with a loss of 0.7244, while 
the validation accuracy was 0.6032 and the validation loss was 1.0403 (Fig. 9). 

 

Fig. 9. Training and validation metrics for the feature extraction + MLP approach. 

4.3   Comparison of Results from Two Approaches 

In general, the first model’s position classification achieved high accuracy in both the 
training and validation sets (Table 1). In contrast, pose classification showed signs of 
overfitting, with a notable gap between training and validation accuracy. 
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Table 1. Loss and accuracy results for the training and validation sets (first approach). 

Metric Training Set Validation Set 

Pose Accuracy 72.5% 38.8% 
Position Accuracy 97.2% 92.6% 
Pose Loss (Final Epoch) 0.8146 1.7386 
Position Loss (Final Epoch) 0.1123 0.1293 
Total Loss (Final Epoch) 0.9269 1.8679 

 
The pose confusion matrix indicated misclassifications between the Walking and 

Standing classes, whereas the Sitting and Dancing classes were predicted with higher 
reliability due to their more distinguishable actions. 

In the second approach (motion classification using raw video images), since the use 
of CNN + LSTM significantly extended the epoch durations, the features of the dataset 
were extracted in compressed .npz format prior to training, and the training was 
performed on these precomputed features. As a result, epoch durations were reduced 
from approximately one hour to only 2–3 seconds, greatly accelerating the training 
process. 

Since the model in the second approach was trained for a single combined (motion–
position) classification task, the separate “Pose Accuracy,” “Position Accuracy,” “Pose 
Loss,” and “Position Loss” metrics that were present in the first approach are not 
available. The values shown therefore correspond to the combined classification of pose 
and position (Table 2). 

Table 2. Loss and accuracy results for the training and validation sets (second approach). 

Metric Training Set Validation Set 

Pose-Position Accuracy  75.3% 63.5% 
Pose-Position Loss  0.648 0.986 

 
Video predictions achieved confidence values of up to 0.90. Confidence decreased 

for actions with similar characteristics, such as Walking and Running, whereas actions 
such as Sitting achieved particularly high confidence scores. For similar motions (e.g., 
Walking vs. Running), some instances were misclassified in terms of motion class, but 
the location prediction remained correct (Fig. 10). 
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Fig. 10. Predictions obtained using the feature extraction and MLP approach. 

The “Sitting” class achieved the highest performance with an F1-score of 0.83 and 
a notably high recall of 0.92. This is a critical finding for the lighting system, as 
“Sitting” represents a state in which users are likely to remain stationary for extended 
periods (e.g., reading, resting), requiring stable and consistent illumination. The model 
successfully identified this state in 92% of cases. 

The lowest performance was observed in the “Walking” (F1: 0.36) and “Standing” 
(F1: 0.43) action classes. This confirms the visual ambiguity mentioned earlier; the 
transition frames between walking and standing are morphologically similar, causing 
the model to confuse these labels. 

While the overall pose accuracy was 0.52, the high success rate in “Sitting” ensures 
that the system performs well in the most duration-heavy activity. For more dynamic 
and ambiguous classes, such as “Walking” vs. “Standing,” the system’s fail-safe relies 
on the position accuracy (97.2%), ensuring that even if the action is misclassified, the 
lighting location remains correct (Table 3). 

The fact that positional accuracy remained high in all tests demonstrates that the 
system reliably determines the position of a person in the space, even if it occasionally 
misinterprets the nuances of dynamic movement. 
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Table 3. Precision, recall, and F1-score results for the second approach. 

Action Class Precision Recall F1-Score 

Sitting 0.75 0.92 0.83 

Dancing 0.39 0.58 0.47 

Running 0.56 0.38 0.45 

Standing 0.50 0.38 0.43 

Walking 0.40 0.33 0.36 

5   Discussion and Conclusion 

This study aims to develop a spatial lighting experience through body actions. In 
interior lighting design, factors such as visual performance and visual comfort are 
central, as delineated in the lighting standards set by the International Commission on 
Illumination [23]. Instead of a fixed spatial lighting system, a human action–adaptive 
lighting control system enhances the spatial experience through interactivity. Within 
this approach, there are two main objectives: (i) to obtain a lighting output for a space 
according to the experiencer’s action and position by using machine learning models, 
and (ii) to compare skeleton-based and pixel-based machine learning models to identify 
the best results for human action recognition. 

This study demonstrated that it is possible to use body action as an input for spatial 
lighting. Even though the results of action estimation were insufficient, position 
recognition produced highly accurate outputs. The findings suggest that further 
development is required to effectively use body interactions for lighting design. Within 
the scope of this experiment, position estimation results met expectations, whereas 
action estimation was insufficient to fully realize the proposed interaction framework. 

The limited sample size of the dataset (only 270 videos) made training deep 
CNN+LSTM models challenging in terms of both time and computational resources. 
As a proof-of-concept addressing data limitations, a custom dataset was created to 
avoid background clutter commonly found in publicly available datasets, and no open-
source datasets were used. The primary aim of this decision was to build and validate a 
methodological framework rather than to achieve maximal classification accuracy. 
Accordingly, this study is positioned as a comparative methodological investigation of 
two machine learning approaches. Therefore, even though a higher number of classes 
could improve model performance, five action classes were sufficient to demonstrate 
the comparative results and applicability of the proposed framework. With the feature 
extraction + MLP approach, which used high-level vectors extracted from the pre-
trained ResNet50, the training time per epoch was reduced from approximately one 
hour to only a few seconds, while achieving satisfactory accuracy. In comparison, the 
first approach achieved fast epoch times because it directly processed low-dimensional 
data from MediaPipe-based skeleton extraction, whereas the second approach provided 
stronger generalization even with a limited dataset by holistically capturing action and 
position through the rich information contained in raw images. 
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In this study, the methods employed reflect a combination of techniques that were 
available and developed during the research period (February-June 2025). Future 
research will proceed according to the methods and technologies available at that time. 
Increasing the dataset size will be essential for improving accuracy, as data limitations 
in the present study directly affected model performance. Adjusting the architecture 
and the number of layers of the machine learning models may also yield better 
outcomes. Furthermore, while the outputs of this study were two-dimensional, future 
research could explore three-dimensional action recognition, enabling the generation 
of 3D spatial lighting proposals for interior environments. Moreover, expanding the 
number of recognized actions would enhance usability across a wider range of activities 
and spatial contexts, allowing lighting responses to be tailored to diverse environments. 

From an architectural design perspective, this machine learning–supported method 
assists designers in lighting selection based on spatial and user requirements, whether 
implemented as a fixed lighting scheme or as an adaptive system. By recognizing 
human actions and modulating the atmosphere in real time, the system transforms space 
from a static condition into a dynamic experiential environment. Consequently, lighting 
transcends its conventional role as a utility or decorative element and becomes a 
flexible design instrument that adapts spatial function according to user activity. This 
approach enables designers to integrate user experience (UX) principles into physical 
space, supporting the creation of more personalized, intuitive, and human-centered 
interiors. 

From a methodological standpoint, this study contributes to the intersection of 
intelligent environments, interaction design, and architecture by establishing an 
interdisciplinary bridge between computer vision and lighting design. Rather than 
focusing solely on object recognition, the proposed workflow incorporates the semantic 
analysis of complex human movements and translates this data into spatial outputs in 
the form of lighting scenarios. In this respect, the study offers a contribution to the 
literature on context-aware systems, particularly within the built environment. 

In terms of societal implications, action-oriented lighting systems support a vision 
of sustainable environments by optimizing energy consumption and reducing 
unnecessary energy use. By adapting lighting conditions to actual occupancy and 
activity patterns, such systems can contribute to both environmental responsibility and 
user comfort. 

Overall, the findings provide a foundation for future research on body action 
recognition and interactive spatial systems. Beyond lighting applications, body action 
estimation holds potential for controlling sound, heating, and other physical or digital 
environmental parameters. Such extensions may expand the representational and 
experiential dimensions of architecture. Understanding human behavior and bodily 
interaction with space deepens spatial perception, and increased interactivity between 
the body and the built environment can significantly enhance overall spatial experience.  
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