College students-in-the-loop for their mental health: a case of AI and humans working together to support well-being

Vanessa de Cássia Alves, Franco Eusébio Garcia, Conrado Saud, Augusto Mendes, Helena Medeiros Caseli, Vivian Genaro Motti, Luciano de Oliveira Neris, Tais Bleicher and Vânia P. Almeida Neris
pp.  81 – 96, download
(https://doi.org/10.55612/s-5002-059-003)

Abstract

Technology plays a relevant role in mental health. Specifically, integrating pervasive technologies with artificial intelligence (AI) holds promising potential to collect users’ data, monitor individuals daily, and support treatment. However, the lack of trust in the collected data is a common limitation of prior work on mental health and technology. This paper proposes involving the user in a Human-in-the-loop approach as a solution to deal with the lack of accuracy of data collected through pervasive technology. In our study, end users judged and evaluated the data collected at two different times: before training the computational model, which would be later used for classification; and afterward to evaluate newly collected data that would be predicted and classified by the model. The solution proposed was implemented and tested in a project related to depression in college students. The results indicate positive reactions to the predicted classifications.

Keywords: human-in-the-loop, artificial intelligence, mental health, depression, mobile sensors, wearable, digital phenotyping, college students

References

1. Eichstaedt, J. C.; Smith, R. J.; Merchant, R. M.; Ungar, L. H.; Crutchley, P.; Preoţiuc-Pietro, D.; ASCH, D. A.; Schwartz, H. A. Facebook language predicts depression in medical records. PNAS, v. 115, n. 44, October, 2018. DOI: 10.1073/pnas.1802331115.
2. Lauckner, C.; Hill, M.; Ingram, L. A. An exploratory study of the relationship between social technology use and depression among college students. Journal of College Student Psychotherapy, 34(1), 33-39, 2020. DOI: https://doi.org/10.1080/87568225.2018.1508396.
3. Ibrahim, A. K.; Kelly, S. J.; Adams, C. E.; Glazebrook, C. A systematic review of studies of depression prevalence in university students. Journal of Psychiatric Research. Volume 47, Issue 3, Pages 391-400, 2013. DOI:10.1016/j.jpsychires.2012.11.015.
4. Pacheco, J. P., Giacomin, H T., Tam, W. W., Ribeiro, T. B., Arab, C., Bezerra, I. M., & Pinasco, G. C. Mental health problems among medical students in Brazil: a systematic review and meta-analysis. Brazilian Journal of Psychiatry, 39(4), 369-378. 2017. DOI: 10.1590/1516-4446-2017-2223.
5. APA. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). Arlington, VA: American Psychiatric Association, 2013.
6. Melcher J, Hays R, Torous J. Digital phenotyping for mental health of college students: a clinical review. Evid Based Ment Health. 2020 Nov;23(4):161-166. Epub 2020 Sep 30. PMID: 32998937; PMCID: PMC10231503. DOI: 10.1136/ebmental-2020-300180.
7. Wang R, Chen F, Chen Z, et al. StudentLife: Using smartphones to assess mental health and academic performance of college students. Mobile Health – Sensors, Analytic Methods, and Applications, 2017. DOI: 10.1007/978-3-319-51394-2_2.
8. Boukhechba M, Daros AR, Fua K, et al. DemonicSalmon: monitoring mental health and social interactions of college students using smartphones. Smart Health 2018;9-10:192–203. DOI: 10.1016/j.smhl.2018.07.005.
9. Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annu Rev Clin Psychol. 2008;4:1-32. PMID: 18509902. DOI: 10.1146/annurev.clinpsy.3.022806.091415.
10. WARE, S. et al. Predicting depressive symptoms using smartphone data. Smart Health, Elsevier BV, v. 15, p. 100093, mar. 2020. DOI: https://doi.org/10.1016/j.smhl.2019.100093
11. FARHAN, A. A. et al. Behavior vs. introspection: refining prediction of clinical depression via smartphone sensing data. p. 1–8, 2016. DOI: 10.1109/WH.2016.7764553.
12. NARZIEV, N. et al. STDD: Short-term depression detection with passive sensing. Sensors, MDPI AG, v. 20, n. 5, p. 1396, mar. 2020. DOI: 0.3390/s20051396.
13. KIM, J.; HONG, J.; CHOI, Y. Automatic depression prediction using screen lock/unlock data on the smartphone. In: 2021 18th International Conference on Ubiquitous Robots (UR). IEEE, 2021. DOI: 10.1109/UR52253.2021.9494673.
14. DAI, R. et al. Multi-task learning for randomized controlled trials: A case study on predicting depression with wearable data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Association for Computing Machinery, New York, NY, USA, v. 6, n. 2, jul 2022. DOI:10.1145/3534591.
15. MASUD, M. T. et al. Unobtrusive monitoring of behavior and movement patterns to detect clinical depression severity level via smartphone. Journal of Biomedical Informatics, Elsevier BV, v. 103, p. 103371, mar. 2020. DOI: 10.1016/j.jbi.2019.103371.
16. Tomaszewski John E. Chapter 11 – Overview of the role of artificial intelligence in pathology: the computer as a pathology digital assistant. Stanley Cohen, Artificial Intelligence and Deep Learning in Pathology, Elsevier, 2021. Pages 237-262. DOI: 10.1016/B978-0-323-67538-3.00011-7.
17. Shneiderman B. Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal of Human–Computer Interaction, 36(6):495–504, 2020. DOI: 10.1080/10447318.2020.1741118.
18. Wei Xu. Toward human-centered AI: a perspective from human-computer interaction. Interactions 26, 4, 2019. Pages 42–46. DOI: 10.1145/3328485.
19. Gunning D, Stefik M., Choi J., Miller T., Stumpf S., and Yang G.-Z.. Xai-explainable artificial intelligence. Science Robotics, 4(37), Science Robotics, 4 (37) 18 December 2019, DOI: 10.1126/scirobotics.aay7120.
20. Chris J. Michael, Dina Acklin, Jaelle Scheuerman. On Interactive Machine Learning and the Potential of Cognitive Feedback. March 2020. DOI: https://doi.org/10.48550/arXiv.2003.10365.
21. Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ríos D, Bobes-Bascarán J, Fernández-Leal A. Human-in-the-loop machine learning: a state of the art. Artificial Intelligence Review, 56, 08 2022. DOI: 10.1007/s10462-022-10246-w.
22. Santos, Iná S. et al. Sensibilidade e especificidade do Patient Health Questionnaire-9 (PHQ-9) entre adultos da população geral. Cadernos de Saúde Pública [online]. 2013, v. 29, n. 8, pp. 1533-1543. ISSN 1678-4464. DOI: 10.1590/0102-311X00144612..
23. Paula Maia de Souza, Isabella da Costa Pires, Vivian Genaro Motti, Helena Medeiros Caseli, Jair Barbosa Neto, Larissa C Martini, and Vânia Paula de Almeida Neris. 2022. Design recommendations for chatbots to support people with depression. In Proceedings of the 21st Brazilian Symposium on Human Factors in Computing Systems (IHC ’22). Association for Computing Machinery, New York, NY, USA, Article 12, 1–11. DOI: 10.1145/3554364.3559119.

back to Table of Contents