Wei Win Loy, Anthony Franze, Jared Donovan, Muge Fialho Leandro Alves Teixeira, Matt Adcock, Markus Rittenbruch
pp. 117 – 143, download
(https://doi.org/10.55612/s-5002-061-004)
Abstract
The emergence of collaborative robotics presents an opportunity for architectural designers to safely engage in design and fabrication through human-robot collaboration (HRC). By leveraging the adaptability, creativity, and design judgement of designers with the strength, repeatability, and design precision of robotic assistance, HRC has the potential to create a unified design-fabrication workflow. Recent advancements in augmented reality (AR) technology further enhance these prospects by enabling users to superimpose context-sensitive, computer-generated information in the real world. AR technology also provides situational awareness, which proves beneficial in the context of HRC. The maturation of AR technologies offers new possibilities for developing HRC systems tailored to architectural design-fabrication needs. Recognizing the pivotal role of human factors in HRC development process, this paper aims to explore the architectural designers’ needs to develop an AR-enabled HRC system that better supports the fabrication-centric design process, such as exploratory collaborative assembly tasks.
Key findings highlight the necessity for a unified design-fabrication workflow, a clearer allocation of tasks between designers and robotic arms, an intuitive user interface, a streamlined interaction process, a better understanding of robot intentions and movements, intuitive procedures for error avoidance and correction, and enhanced user safety in HRC scenarios
Keywords: Augmented Reality (AR), Human Robot Collaboration (HRC), Human Robot Interaction (HRI), Architectural Design, Fabrication-centric Design Process, User Interface / User Experience (UI/UX), Co-design, User Centered Design (UCD).
CRediT author statement. Wei Win Loy: Conceptualization, Methodology, Software, Formal analysis, Investigating, Data curation, Writing – original draft preparation. Anthony Franze: Investigating, Writing – review and editing. Jared Donovan: Conceptualization, Data curation, Writing – review and editing, Supervision. Muge Fialho Leandro Alves Teixeira: Conceptualization, Resources, Writing – review and editing, Supervision. Matt Adcock: Conceptualization, Writing – review and editing, Supervision. Markus Rittenbruch: Conceptualization, Writing – review and editing, Supervision.
References
1. Djuric A. M., Urbanic R. J., Rickli J. L.: A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems, SAE Int. J. Mater. Manf., vol. 9, no. 2, pp. 457–464 (2016) doi: 10.4271/2016-01-0337.
2. Akella P. et al.: Cobots for the automobile assembly line, in Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA: IEEE, pp. 728–733 (1999) doi: 10.1109/ROBOT.1999.770061.
3. Guertler M. et al.: WHEN IS A ROBOT A COBOT? MOVING BEYOND MANUFACTURING AND ARM-BASED COBOT MANIPULATORS, Proc. Des. Soc., vol. 3, pp. 3889–3898 (2023) doi: 10.1017/pds.2023.390.
4. Colgate J. E., Wannasuphoprasit W., Peshkin M. A.: Cobots: Robots for Collaboration with Human Operators (1999)
5. Sharif S., Gentry T. R., Sweet L. M., Human-Robot Collaboration for Creative and Integrated Design and Fabrication Processes, presented at the 33th International Symposium on Automation and Robotics in Construction, Auburn, AL, USA (2016) doi: 10.22260/ISARC2016/0072.
6. Brell-C̦okcan S. and Braumann J.: Eds., Rob/Arch 2012: robotic fabrication in architecture, art and design. Wien ; New York: Springer (2013)
7. Budig M., Lim J., Petrovic R., Integrating Robotic Fabrication in the Design Process, Archit Design, vol. 84, no. 3, pp. 22–43 (2014), doi: 10.1002/ad.1752.
8. Raessa M., Chen J. C. Y., Wan W., Harada K., Human-in-the-loop Robotic Manipulation Planning for Collaborative Assembly, arXiv, (2019) Accessed: Jan. 29, 2024. [Online]. Available: http://arxiv.org/abs/1909.11280
9. Mitterberger D. et al.: Interactive Robotic Plastering: Augmented Interactive Design and Fabrication for On-site Robotic Plastering, in CHI Conference on Human Factors in Computing Systems, New Orleans LA USA: ACM, pp. 1–18 (2022) doi: 10.1145/3491102.3501842.
10. Peng H. et al.: RoMA: Interactive Fabrication with Augmented Reality and a Robotic 3D Printer, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal QC Canada: ACM, pp. 1–12 (2018) doi: 10.1145/3173574.3174153.
11. Schmidt B., Sánchez De Ocãna Torroba A., Grahn G., Karlsson I., Ng A. H. C.: Augmented Reality Approach for a User Interface in a Robotic Production System, in Advances in Transdisciplinary Engineering, Ng A. H. C., Syberfeldt A., Högberg D. and Holm M., Eds., IOS Press (2022) doi: 10.3233/ATDE220143.
12. Song Y., Koeck R., Luo S.: AR Digi-Component – AR-assisted,real-time,immersive design and robotic fabrication workflow for parametric architectural structures, presented at the CAADRIA 2021: Projections, Hong Kong, pp. 253–262 (2021) doi: 10.52842/conf.caadria.2021.2.253.
13. Mitterberger D.: Augmented human, extended machine: extended reality systems for robotic fabrication in architecture, engineering, and construction, XRDS, vol. 29, no. 1, pp. 48–53 (2022) doi: 10.1145/3558196.
14. Alonso-Martín F., Castro-González A., Luengo F., Salichs M.: Augmented Robotics Dialog System for Enhancing Human–Robot Interaction, Sensors, vol. 15, no. 7, pp. 15799–15829 (2015) doi: 10.3390/s150715799.
15. Panchetti T., Pietrantoni L., Puzzo G., Gualtieri L., Fraboni, F.: Assessing the Relationship between Cognitive Workload, Workstation Design, User Acceptance and Trust in Collaborative Robots, Applied Sciences, vol. 13, no. 3, p. 1720 (2023), doi: 10.3390/app13031720.
16. Gervasi R., Mastrogiacomo L., Franceschini F. : A conceptual framework to evaluate human-robot collaboration, Int J Adv Manuf Technol, vol. 108, no. 3, pp. 841–865 (2020) doi: 10.1007/s00170-020-05363-1.
17. Ithayakumar A., Osswald A., Thomas V., Maurice P.: Reducing work-related physical fatigue with a collaborative robot: A decision-making approach, JNRH 2021 – Journées Nationales de la Robotique Humanoïde, Angers, France (2021) hal-03254968v2
18. Willis K. D. D., Xu C., Wu K.-J., Levin G., Gross M. D.: Interactive fabrication: new interfaces for digital fabrication,” in Proceedings of the fifth international conference on Tangible, embedded, and embodied interaction, Funchal Portugal: ACM, pp. 69–72 (2010) doi: 10.1145/1935701.1935716.
19. Kyjanek O., Al Bahar B., Vasey L., Wannemacher B., Menges A.: Implementation of an Augmented Reality AR Workflow for Human Robot Collaboration in Timber Prefabrication,” presented at the 36th International Symposium on Automation and Robotics in Construction, Banff, AB, Canada (2019) doi: 10.22260/ISARC2019/0164.
20. Prati E., Peruzzini M., Pellicciari M., Raffaeli R.: How to include User eXperience in the design of Human-Robot Interaction, Robotics and Computer-Integrated Manufacturing, vol. 68, p. 102072 (2021) doi: 10.1016/j.rcim.2020.102072.
21. Kawulich B. B.: Participant Observation as a Data Collection Method, Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, vol. Vol 6, p. Reuse (2005) doi: 10.17169/FQS-6.2.466.
22. Galletta A.: The Semi-Structured Interview as a Repertoire of Possibilities, in Mastering the Semi-Structured Interview and Beyond: From Research Design to Analysis and Publication, NYU Press, pp. 45–72 (2013) [Online] Available: https://www.jstor.org/stable/j.ctt9qgh5x.8
23. Blandford A.: Semi-structured qualitative studies (2014) [Online]. Available: https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/semi-structured-qualitative-studies
24. Braun V. and Clarke V.: Reflecting on reflexive thematic analysis, Qualitative Research in Sport, Exercise and Health, vol. 11, no. 4, pp. 589–597 (2019) doi: 10.1080/2159676X.2019.1628806.
25. Sauppé A. and Mutlu B.: The Social Impact of a Robot Co-Worker in Industrial Settings, in Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul Republic of Korea: ACM (2015) pp. 3613–3622. doi: 10.1145/2702123.2702181.
26. Wurhofer D., Meneweger T., Fuchsberger V., Tscheligi M.: Deploying Robots in a Production Environment: A Study on Temporal Transitions of Workers’ Experiences, in Human-Computer Interaction – INTERACT 2015, vol. 9298, Abascal J., Barbosa S., Fetter M., Gross T., Palanque P., Winckler M., Eds., in Lecture Notes in Computer Science, vol. 9298. , Cham: Springer International Publishing, pp. 203–220 (2015) doi: 10.1007/978-3-319-22698-9_14.
27. Brüninghaus J., Krewet C., Kuhlenkötter B.: Robot Assisted Asymmetric Incremental Sheet Forming, in Rob | Arch 2012, Brell-Çokcan S. and Braumann J., Eds., Vienna: Springer Vienna, pp. 155–160 (2013) doi: 10.1007/978-3-7091-1465-0_16.
28. Weissenböck R., Robotic Design-Fabrication – Exploring Robotic Fabrication as a Dynamic Design Process, in eCAADe, Vienna, Austria, pp. 309–318 (2015) doi: 10.52842/conf.ecaade.2015.2.309.
29. Mitterberger D., Atanasova L., Dörfler K., Gramazio F., Kohler M.: Tie a knot: human–robot cooperative workflow for assembling wooden structures using rope joints, Constr Robot, vol. 6, no. 3–4, pp. 277–292 (2022) doi: 10.1007/s41693-022-00083-2.