Juan Diego Cerrón Salcedo, Jair Jesús León Lucano, Alberto Torres Hinostroza, Joaquin De los Rios Rosado, Klinge Villalba Condori
pp. 108 – 130, download
(https://doi.org/10.55612/s-5002-063-006)
Abstract
This study presents a case study on the application of gamified educational practices in STEAM education, specifically focusing on the use of robotics and iterative design among youth in rural areas of Arequipa, Peru. The study involved the integration of “Lunabot,” an educational robot, to foster technological advancement and enhance learning experiences. Conducted in the “tambos” (rural community centers) of the Arequipa region, the research employed a mixed-methods approach, combining quantitative and qualitative data collection methods. Initially, an exploratory factor analysis was conducted to condense the data, followed by a confirmatory factor analysis through structural equation modeling to validate the findings. A key instrument was a questionnaire administered to students, assessing their interest in, and resistance to, the gamified learning approach. The results, with a Cronbach’s alpha value of 0.765 and a McDonald’s omega of 0.864, highlight the significant role of competitive and challenging activities, facilitated by Lunabot, in enhancing student engagement and motivation in gamification and STEAM learning. This case study contributes to understanding how gamified strategies and robotics can be effectively integrated into educational settings, particularly in remote areas, to improve student participation and motivation in STEAM fields.
Keywords: Gamification, STEAM, Fabrication Laboratory, didactic, SMART PLS, SEM.
References
1. E. Reina, K. Reina, and C. Reina, “Gamificación como elemento favorecedor para la Construcción de habilidades sociales en estudiantes de Educación Básica.,” Ciencia Latina Revista Científica Multidisciplinar, vol. 7, no. 2, pp. 7289–7311, May 2023, doi: 10.37811/cl_rcm.v7i2.5868.
2. D. Gupta and M. Madhukar, “Operational Challenges in Online Self-Learning Education Adoption,” in 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), IEEE, 2021, pp. 51–55.
3. K. Pitkänen, M. Iwata, and J. Laru, “Exploring technology-oriented Fab Lab facilitators’ role as educators in K-12 education: Focus on scaffolding novice students’ learning in digital fabrication activities,” Int J Child Comput Interact, vol. 26, p. 100207, 2020, doi: https://doi.org/10.1016/j.ijcci.2020.100207.
4. J. V. Viegas D’Abreu and K. O. o Villalba Condori, “Educación y Robótica Educativa,” RED. Revista de Educación a Distancia, no. 54, pp. 1–13, 2017, [Online]. Available: https://www.redalyc.org/articulo.oa?id=54751771011
5. T. Wenzel, “Open hardware: From DIY trend to global transformation in access to laboratory equipment,” PLoS Biol, vol. 21, no. 1, pp. e3001931-, Jan. 2023, [Online]. Available: https://doi.org/10.1371/journal.pbio.3001931
6. J. Grodotzki, S. Upadhya, and A. E. Tekkaya, “Engineering education amid a global pandemic,” Advances in Industrial and Manufacturing Engineering, vol. 3, p. 100058, 2021, doi: https://doi.org/10.1016/j.aime.2021.100058.
7. A. M. Ortiz-Colón, J. Jordán, and M. Agredai, “Gamification in education: An overview on the state of the art,” Educacao e Pesquisa, vol. 44, 2018, doi: 10.1590/S1678-4634201844173773.
8. F. Valenzuela-Pascual et al., “Use of a gamified website to increase pain neurophysiology knowledge and improve satisfaction and motivation among students studying for a degree in physiotherapy: a quasi-experimental study,” BMC Med Educ, vol. 22, no. 1, Dec. 2022, doi: 10.1186/s12909-022-03457-w.
9. M. Y. Calderón Arévalo, G. S. Flores Mejía, A. Ruiz Pérez, and S. E. Castillo Olsson, “Dialnet-GamificacionEnLaCompresionLectoraDeLosEstudiantesE-8471673”.
10. F. De Educación, “PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ.”
11. L. A. Gil-Aciron, “The gamer psychology: a psychological perspective on game design and gamification,” Interactive Learning Environments, pp. 1–25, Jun. 2022, doi: 10.1080/10494820.2022.2082489.
12. J. Y. Kim, J. S. Seo, and K. Kim, “Development of novel-engineering-based maker education instructional model,” Educ Inf Technol (Dordr), vol. 27, no. 5, pp. 7327–7371, Jun. 2022, doi: 10.1007/s10639-021-10841-4.
13. M. Guerrero Celis, S. K. Yrigoyen Fajardo, and G. Vasallo Sambuceti, “La actitud hacia el uso de la gamificación y su relación con la motivación y el rendimiento académico en estudiantes universitarios del primer ciclo de matemática de una Universidad privada de Lima – Perú,” 2022, Universidad Peruana de Ciencias Aplicadas (UPC). [Online]. Available: http://hdl.handle.net/10757/663480
14. R. Casado Fernández and M. Checa Romero, “Robótica y Proyectos STEAM: Desarrollo de la creatividad en las aulas de Educación Primaria,” Pixel-Bit, 2020.
15. J. Katz-Buonincontro, “Building dream STEAM teams: Harnessing interdisciplinarity to enrich research,” in Handbook of Organizational Creativity: Leadership, Interventions, and Macro Level Issues, Second Edition, Elsevier, 2023, pp. 329–342. doi: 10.1016/B978-0-323-91841-1.00012-9.
16. A. : Thania and A. Q. Delgadillo, “BENEMÉRITA Y CENTENARIA ESCUELA NORMAL DEL ESTADO DE SAN LUIS POTOSÍ. TITULO: Aplicación de estrategias lúdicas y tecnológicas para la enseñanza de la historia.”
17. K. E. Povis Vega, “Propuesta de gestión de las emociones basadas en la gamificación, relajación y evitación en una institución educativa pública de Lima,” 2022.
18. M. K. Kabilan, N. Annamalai, and K.-M. Chuah, “Practices, purposes and challenges in integrating gamification using technology: A mixed-methods study on university academics,” Educ Inf Technol (Dordr), vol. 28, no. 11, pp. 14249–14281, 2023.
19. J. Zhang, Q. Jiang, W. Zhang, L. Kang, P. B. Lowry, and X. Zhang, “Explaining the outcomes of social gamification: A longitudinal field experiment,” Journal of Management Information Systems, vol. 40, no. 2, pp. 401–439, 2023.
20. J. Perez-Aranda, S. Medina-Claros, and R. Urrestarazu-Capellán, “Effects of a collaborative and gamified online learning methodology on class and test emotions,” Educ Inf Technol (Dordr), pp. 1–33, 2023.
21. E. Zheng and Q. Wang, “Effectiveness of Online Collaborative Learning in Gamified Environments.,” International Journal of Emerging Technologies in Learning, vol. 18, no. 17, 2023.
22. L. Zhang, Z. Shao, J. Benitez, and R. Zhang, “How to improve user engagement and retention in mobile payment: A gamification affordance perspective,” Decis Support Syst, vol. 168, p. 113941, 2023.
23. I. Yuyun and D. Suherdi, “Components and Strategies for Personalized Learning in Higher Education: A Systematic Review,” in 20th AsiaTEFL-68th TEFLIN-5th iNELTAL Conference (ASIATEFL 2022), Atlantis Press, 2023, pp. 271–290.
24. M. P. Pratama, R. Sampelolo, and H. Lura, “Revolutionizing education: harnessing the power of artificial intelligence for personalized learning,” Klasikal: Journal of Education, Language Teaching and Science, vol. 5, no. 2, pp. 350–357, 2023.
25. J. Lahiassi, O. Elwarraki, S. Aammou, and Y. Jdidou, “Pedagogical Innovations in Personalized Learning,” in Fostering Pedagogical Innovation Through Effective Instructional Design, IGI Global, 2024, pp. 329–341.
26. K. Stoeffler, Y. Rosen, M. Bolsinova, and A. A. von Davier, “Gamified performance assessment of collaborative problem solving skills,” Comput Human Behav, vol. 104, p. 106036, 2020.
27. G. Galetta, “The gamification: Applications and developments for creativity and education,” in Creativity and Innovation in Education Conference, Riga, Latvia, 2013, pp. 1–10.
28. M. Khasawneh, “Beyond digital platforms: Gamified skill development in real-world scenarios and environmental variables,” International Journal of Data and Network Science, vol. 8, no. 1, pp. 213–220, 2024.
29. R. Borgo et al., “Effective Use of Likert Scales in Visualization Evaluations: A Systematic Review,” 2022. Available: https://osf.io/exbz8/.
30. J. A. Gliem and R. R. Gliem, “Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales,” Midwest Research-to-Practice Conference in Adult, Continuing, and Community …, 2003.
31. Stephanie Glen, “Kaiser-Meyer-Olkin (KMO) Test for Sampling Adequacy – Statistics How To,” 2016.
32. H. F. Kaiser, “The varimax criterion for analytic rotation in factor analysis,” Psychometrika, vol. 23, no. 3, pp. 187–200, 1958.
33. J. F. Hair Jr, G. T. M. Hult, C. Ringle, and M. Sarstedt, A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications, 2016.
34. F. Hilkenmeier, C. Bohndick, T. Bohndick, and J. Hilkenmeier, “Assessing Distinctiveness in Multidimensional Instruments Without Access to Raw Data – A Manifest Fornell-Larcker Criterion,” Front Psychol, vol. 11, 2020, doi: 10.3389/fpsyg.2020.00223.
35. J. Henseler, C. M. Ringle, and M. Sarstedt, “A new criterion for assessing discriminant validity in variance-based structural equation modeling,” J Acad Mark Sci, vol. 43, no. 1, pp. 115–135, 2015.
36. M. Rönkkö and E. Cho, “An Updated Guideline for Assessing Discriminant Validity,” Organ Res Methods, vol. 25, no. 1, 2022, doi: 10.1177/1094428120968614.