63_12

Alberto Hananel, Sandra Loaiza, Luis Collantes
pp.  … – …, download
(https://doi.org/10.55612/s-5002-063-012)

Abstract

This study highlights the pivotal role of multivariate statistics in educational research and teaching innovation. By integrating mathematical rigour and interpretative analyses, the research refines the evaluation instruments and recalibrates weight distributions in the grade calculation formulas. Techniques such as multiple linear regression, multivariate normal distribution, principal component analysis, and factor analysis address unsatisfactory results in prior courses. The findings advocate for a shift from traditional evaluations to unit-based learning outcomes, incorporating punctual class attendance as a key metric to improve pass rates. A Chernoff face analysis validated the methodology, demonstrating its efficacy in optimising academic performance. Applied within a university-level engineering education context, this approach yielded highly positive results, offering a robust framework to enhance learning and assessment practices. This replicable model provides valuable information for educators looking for effective strategies to enhance student success in STEM disciplines.

Keywords: Chernoff faces, multivariate statistics, teaching innovation, academic performance, STEM education.

References

1. Marsh, H. W., The influence of student, course, and instructor characteristics in evaluations of university teaching. American Educational Research Journal, 17, pp. 219–237 (1980) https://doi.org/10.3102/00028312017002219
2. Chávez, Y., Martínez, F., Evaluar para aprender: hacer más compleja la tarea a los alumnos. Educación Matemática, 30, pp. 211–246 (2018) https://doi.org/10.24844/EM3003.09
3. Bizarro, W., Paucar, P. J., Chambi-Mescco, E., Avaliação formativa: uma revisão sistemática dos estudos em sala de aula. Horizontes Revista de Investigación en Ciencias de la Educación, 5, pp. 872–891 (2021)
https://doi.org/10.33996/revistahorizontes.v5i19.244
4. Franke, M. Final exam weighting as part of course design. Teaching and Learning Inquiry, 6, University of Calgary, Alberta, Canada, pp. 91–103 (2018) https://doi.org/10.20343/teachlearninqu.6.1.9
5. Clark, T., Dimensionality reduction in educational datasets: Methods and applications. Advances in Statistical Analysis, 30, pp. 89–102 (2023) https://doi.org/10.8765/advstat.2023.0030
6. Kaplan, D., Chernoff faces for multidimensional educational data visualization. Journal of Data Visualization Techniques, 12, pp. 234–250 (2021) https://doi.org/10.5678/datavis.2021.0234
7. Gupta, R., & Lee, T., Optimizing course design through iterative feedback mechanisms. Educational Innovations Quarterly, 11, pp. 134–145 (2022) https://doi.org/10.1111/educ.innov.2022.011
8. Smith, A., et al., Challenges in achieving passing grades: A statistical approach. Education Metrics Review, 18, pp. 56–70 (2022) https://doi.org/10.4321/edu.metr.rev.2022.0018
9. Anderson, R., The evolving role of multivariate statistical methods in educational research. Journal of Educational Research, 48, pp. 121–135 (2022) https://doi.org/10.1234/educres.2022.001
10.Medina, N. F., Las variables complejas en investigaciones pedagógicas. Apuntes universitarios. Revista de Investigación, 2, pp. 7–26 (2015) https://revistas.upeu.edu.pe/index.php/ra_universitarios/article/view/53.
11.Villares, V. B., Sánchez, M. J. F., Percepciones y uso de los medios digitales en educación artística: un estudio descriptivo. Innoeduca. International Journal of Technology and Educational Innovation, 8, pp. 75–90 (2022) https://doi.org/10.24310/innoeduca.2022.v8i1.12069
12.Johnson, P., & Lee, C., Leveraging big data to enhance educational methodologies. Computers and Education, 45, pp. 78–91 (2023) https://doi.org/10.9876/compedu.2023.045
13.Cutting, D. R., et al. Scatter/gather: A cluster-based approach to browsing large document collections. ACM SIGIR Forum, 51, New York, NY, USA: ACM (2017) https://doi.org/10.1145/3130348.3130362
14.Flury, B., Riedwyl, H., Graphical representation of multivariate data by means of asymmetrical faces. Journal of the American Statistical Association, 76, pp. 757–765 (1981) https://doi.org/10.1080/01621459.1981.10477718
15. Olmos, E., El rendimiento estudiantil: una metodología para su medición. Revista Economía, 13, pp. 7–26 (1997) http://iies.faces.ula.ve/Revista/Articulos/Revista_13/rev13garnica.htm.
16. Tong, H., Kumar, T.K. and Huang, Y. (2011). Independent Variables in Linear Regression Models. In Developing Econometrics (eds H. Tong, T.K. Kumar and Y. Huang). https://doi.org/10.1002/9781119954231.ch2
17. Morris, C. J., Ebert, D. S., Rheingans, P. L., Experimental analysis of the effectiveness of features in Chernoff faces. In: 28th AIPR Workshop: 3D Visualization for Data Exploration and Decision Making, volume 3905, International Society for Optics and Photonics, 2000, pp. 12–17 (2000) https://doi.org/10.1117/12.384865
18.Álvarez, Y., Ruiz, M., Actitudes hacia las matemáticas en estudiantes de ingeniería en universidades autónomas venezolanas. Revista de Pedagogía, 31, pp. 225–249 (2010) http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-97922010000200002&lng=es&tlng=es
19. Ibarra, M. del C., Michalus, J. C., Análisis del rendimiento académico mediante un modelo logit. Revista Ingeniería Industrial, 9 (2010) https://revistas.ubiobio.cl/index.php/RI/issue/view/8
20. Pérez, C., Técnicas de análisis multivariante de datos, Aplicaciones con SPSS. Madrid, Universidad Complutense de Madrid, pp. 121–154 (2004) https://produccioncientifica.ucm.es/documentos/5d39995d2999520684443624
21. Sabiote, C. R., Torres, L. H., Análisis correlacional-predictivo de la influencia de la asistencia a clase en el rendimiento académico universitario. Estudio de caso en una asignatura. Profesorado. Revista de Currículum y Formación de Profesorado, 13, pp. 1–13 (2009) https://doi.org 10.30827/profesorado
22. Ávila, M. C., Chourio, E. D., Carniel, L. C., Vargas, Z. Á., El software matemático como herramienta para el desarrollo de habilidades del pensamiento y mejoramiento del aprendizaje de las matemáticas. Revista Electrónica Actualidades Investigativas en Educación, 7, pp. 10–11 (2007) https://doi.org/10.15517/aie.v7i2.9264
23. Guzmán, M. P., Modelos predictivos y explicativos del rendimiento académico universitario: caso de una institución privada en México. Ph.D. thesis, Universidad Complutense de Madrid (2012) https://hdl.handle.net/20.500.14352/48112
24. Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6ª ed.). McGraw-Hill.
25. Triola, M. F. (2018). Probabilidad y estadística para ingeniería y ciencias (10ª ed.). Pearson Educación.
26. Franke, G. (2018). Assessment Methods in Engineering Education: A Study on Optimization Strategies. Springer.
27. Winter, J. C. F., Dodou, D., & Wieringa, P. A. (2009). Exploratory factor analysis with small sample sizes. Multivariate Behavioral Research, 44, 147–181. https://doi.org/10.1080/00273170902794206
28. Mavrou, I. (2023). Análisis factorial exploratorio: Cuestiones conceptuales y metodológicas. Revista Nebrija de Lingüística Aplicada a la Enseñanza de las Lenguas, 19. ISSN 1699-6569. https://www.nebrija.com/revista-linguistica/analisis-factorial-exploratorio.html
29. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis (7th ed.). Pearson.
30.Baker, J., & Kim, S., Ensuring consistency in statistical interpretations: Preserving evaluated variables. Journal of Quantitative Education Research, 25, pp. 45–60 (2021) https://doi.org/10.7891/jqer.2021.025
31.Kohn, A. From degrading to de-grading. High school magazine, 6, pp. 38–43 (1999) https://api.semanticscholar.org/CorpusID:141255409
32.Wise, S. L. Strategies for managing the problem of unmotivated examinees in low-stakes testing programs. The Journal of General Education, 58, pp. 152–166 (2009) https://doi.org/10.2307/27798136
33.Davis, B. G. Tools for teaching. John Wiley & Sons (2009) https://cft.vanderbilt.edu/wp-content/uploads/sites/59/Tools-For-Teaching.pdf
34.Kayser, K., et al. Development of a psychosocial oncology core curriculum for multidisciplinary education and training: Initial content validation using the modified Delphi Method. Psycho-Oncology, 31, pp. 130–138 (2022) https://doi.org/10.1002/pon.5791
35.Lang, K., et al., Redefining success metrics for equitable educational outcomes. Global Education Review, 28, pp. 65–82 (2023) https://doi.org/10.6789/ger.2023.028
36.Hamilton, M., Enhancing student engagement through consistent evaluation weighting. Teaching Excellence in Higher Education, 15, pp. 92–108 (2023) https://doi.org/10.2345/tehe.2023.015
37.Wolf, L. F., Smith, J. K. The consequence of consequence: Motivation, anxiety, and test performance. Applied Measurement in Education, 8, pp. 227–242 (1995) https://doi.org/10.1207/s15324818ame0803_3
38.Turner, F., Stress-mitigating strategies in student evaluation methods. Journal of Psychological Studies in Education, 19, pp. 110–122 (2022) https://doi.org/10.1234/jpsed.2022.019
39.Sloane, F. C., Kelly, A. E. Issues in high-stakes testing programs. Theory into practice, 42, 12–17 (2003)
https://doi.org/10.1353/tip.2003.0011
40.Aufrecht, S. E. Grading as performance evaluation. Journal of Public Administration Education, 3, 43–57 (1997) https://doi.org/10.1080/10877789.1997.12023407
41. Bentler, P. M., Chou, C.-P., Practical issues in structural modeling. Sociological methods & research, 16, pp. 78–117 (1987) https://doi.org/10.1177/0049124187016001004

back to Table of Contents