Enrique Villamuelas García, Eva Hurtado Torán, Eduardo Roig Segovia
pp. 90 – 114, download
(https://doi.org/10.55612/s-5002-065-003)
Abstract
Given the growing ubiquity of AI and the consequent valorization of data in territorial representation, it becomes crucial to analyze how multimodal algorithms interpret spatial narratives and community dynamics. This research studies the effects of algorithmic automation on social mappings. Using “Balboa Observa” project, a collaborative web mapping initiative that documents Observatorio Music Festival in Spain, the study explores the interaction between collective cartography, ethnographic analysis, and AI-driven data processing. Unlike conventional AI practices, the prioritizes analyses that avoid imposing structured categories on everyday narratives, allowing inclusion of sensitive information for deeper festival impact understanding. Through multimodal algorithms like CLIP and ImageBind analyzing images, texts, and audio recordings, the research reveals how AI-generated spatial configurations differ from human interpretations and identifies biases from training data and algorithmic processes. The study highlights community participation and data ownership importance to mitigate biases and advocates for transparent, adaptable AI tools for social mapping.
Keywords: Social Mapping, Critical GIS, Socio-spatial Theory, Machine Learning, Multimodal Algorithms, Artificial Intelligence.
References
1. Sanz Simón C.: Del Molino Molina, Sergio (Eds.): La España vacía. Viaje por un país que nunca fue. Madrid, Turner Noema, 2016. 291 pp Cuad Hist Contemp, 40, (2018) https://doi.org/10.5209/CHCO.60347
2. Wang C., Burris M.A.: Photovoice: Concept, Methodology, and Use for Participatory Needs Assessment Health Education and Behavior, 24, (1997) https://doi.org/10.1177/109019819702400309
3. Anguelov D., Dulong C., Filip D., Frueh C., Lafon S., Lyon R., Ogale A., Vincent L., Weaver J.: Google street view: Capturing the world at street level Computer (Long Beach Calif), 43, (2010) https://doi.org/10.1109/MC.2010.170
4. How Street View works and where we will collect images next, https://www.google.com/intl/en_uk/streetview/how-it-works/
5. Create and publish your own Street View imagery, https://www.google.com/intl/en_uk/streetview/contribute/
6. Google Maps 101: How AI helps predict traffic and determine routes, Google Blog, https://blog.google/products/maps/google-maps-101-how-ai-helps-predict-traffic-and-determine-routes/
7. About phone calls from Google Assistant, https://support.google.com/business/answer/7690269?hl=en
8. Panoramio, https://www.panoramio.com/
9. Local Guides, https://maps.google.com/localguides/
10. Kopf J., Chen B., Szeliski R., Cohen M.: Street slide: Browsing Street level imagery ACM SIGGRAPH 2010 Papers, SIGGRAPH 2010 (2010) https://doi.org/10.5209/CHCO.60347
11. Gebru T., Krause J., Wang Y., Chen D., Deng J., Aiden E.L., Fei-Fei L.: Using deep learning and google street view to estimate the demographic makeup of neighborhoods across the United States Proc Natl Acad Sci U S A, 114, (2017) https://doi.org/10.1073/pnas.1700035114
12. Bieri V., Zamboni M., Blumer N.S., Chen Q., Engelmann F.: OpenCity3D: What do Vision-Language Models know about Urban Environments? (2025) https://doi.org/10.1109/WACV61041.2025.00503
13.World scale inverse reinforcement learning in Google Maps, https://research.google/blog/world-scale-inverse-reinforcement-learning-in-google-maps/
14. Quercia D., Schifanella R., Aiello L.M.: The shortest path to happiness: Recommending beautiful, quiet, and happy routes in the city HT 2014 – Proceedings of the 25th ACM Conference on Hypertext and Social Media (2014) https://doi.org/10.1145/2631775.2631799
15. Lyons S.: Satellite surveillance and the orbital unconscious New Media Soc, (2023) https://doi.org/10.1177/14614448231187352
16. Wood D.: The power of maps Sci Am, 268, (1993) https://doi.org/10.1038/scientificamerican0593-88
17. Graham M., De Sabbata S., Zook M.A.: Towards a study of information geographies: (im)mutable augmentations and a mapping of the geographies of information Geo, 2, (2015) https://doi.org/10.1002/geo2.8
18. OpenStreetMap, https://www.openstreetmap.org/
19. Air/ Aria/ Aire A + U-Architecture and Urbanism, (2021)
20. Ciutat Vella’s Land-Use Plan, https://urbannext.net/ciutat-vellas-land-use-plan/
21. Santamaria-Varas M., Martinez-Diez P.: Cartografías de la ciudad nocturna a través del Big Data Obra digital, (2014) https://doi.org/10.25029/od.2014.41.6
22. Larsen J.E., Sapiezynski P., Stopczynski A., Mørup M., Theodorsen R.: Crowds, bluetooth, and rock’n’roll: Understanding music festival participant behavior PDM 2013 – Proceedings of the 1st ACM International Workshop on Personal Data Meets Distributed Multimedia, Co-located with ACM Multimedia 2013 (2013) https://doi.org/10.1145/2509352.2509399
23. Argota Sánchez-Vaquerizo J., Delso Gutiérrez R., Gómez Saiz A.: Watching Puerta del Sol. On Protest Space and its Temporal Conflicts Open!, (2017)
24. Lever J., Arcucci R.: Sentimental wildfire: a social-physics machine learning model for wildfire nowcasting J Comput Soc Sci, 5, (2022) https://doi.org/10.1007/s42001-022-00174-8
25. Kuziemski M., Misuraca G.: AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings Telecomm Policy, 44, (2020) https://doi.org/10.1016/j.telpol.2020.101976
26. Arribas-Bel D.: Accidental, open and everywhere: Emerging data sources for the understanding of cities Applied Geography, 49, (2014) https://doi.org/10.1016/j.apgeog.2013.09.012
27. Thatcher J., O’Sullivan D., Mahmoudi D.: Data colonialism through accumulation by dispossession: New metaphors for daily data Environ Plan D, 34, (2016) https://doi.org/10.1073/pnas.1700035114
28. Tobler W.R.: A Computer Movie Simulating Urban Growth in the Detroit Region Econ Geogr, 46, (1970) https://doi.org/10.2307/143141
29. del Castillo N.: CLIP and the City: Addressing the Artificial Encoding of Cities in Multimodal Foundation Deep Learning Models. In: On Architecture Challenges in Design, pp. 100–109 (2023) https://doi.org/10.60152/eun81fru
30. Arribas-Bel D., Fleischmann M.: Understanding (urban) spaces through form and function Habitat Int, 128, (2022) https://doi.org/10.1016/j.habitatint.2022.102641
31. Can AI Solve Science?, http://writings.stephenwolfram.com/2024/03/can-ai-solve-science
32. Naik N., Philipoom J., Raskar R., Hidalgo C.: Streetscore-predicting the perceived safety of one million streetscapes IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2014) https://doi.org/10.1109/CVPRW.2014.121
33. Arturo, http://arturo.300000kms.net/
34. OpenAI Data Partnerships, https://openai.com/index/data-partnerships/
35. Girardot J.-J.: Inteligencia Territorial y Transición Socio-Ecológica Trabajo, 23, (2011) https://doi.org/10.33776/trabajo.v23i0.956
36. May, J: Signal. Image. Architecture (2019)
37. Queering the map, https://www.queeringthemap.com/
38. Aporee, https://aporee.org/maps/
39. Native Land Digital, https://native-land.ca/
40. Radford A., Kim J.W., Hallacy C., Ramesh A., Goh G., Agarwal S., Sastry G., Askell A., Mishkin P., Clark J., Krueger G., Sutskever I.: Learning Transferable Visual Models From Natural Language Supervision Proceedings of Machine Learning Research. Vol. 139 (2021) https://doi.org/10.48550/arXiv.2103.00020
41. Girdhar R., El-Nouby A., Liu Z., Singh M., Alwala K.V., Joulin A., Misra I.: ImageBind One Embedding Space to Bind Them All Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol. 2023- June (2023) https://doi.org/10.1109/CVPR52729.2023.01457
42. McInnes L., Healy J., Saul N., Großberger L.: UMAP: Uniform Manifold Approximation and Projection J Open Source Softw, 3, (2018) https://doi.org/10.21105/joss.00861
43. Lloyd S.P.: Least Squares Quantization in PCM IEEE Trans Inf Theory, 28, (1982) https://doi.org/10.1109/TIT.1982.1056489
44 Ester M., Kriegel H.P., Sander J., Xu X.: A Density-Based Algorithm for Discovering Clusters A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise Proceedings – 2nd International Conference on Knowledge Discovery and Data Mining, KDD 1996 (1996) https://dl.acm.org/doi/10.5555/3001460.3001507
45. Rousseeuw P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis J Comput Appl Math, 20, (1987) https://doi.org/10.1016/0377-0427(87)90125-7
46. Liang W., Zhang Y., Kwon Y., Yeung S., Zou J.: Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning Advances in Neural Information Processing Systems. Vol. 35 (2022) https://doi.org/10.48550/arXiv.2203.02053
47. Schuhmann C., Beaumont R., Vencu R., Gordon C., Wightman R., Cherti M., Coombes T., Katta A., Mullis C., Wortsman M., Schramowski P., Kundurthy S., Crowson K., Schmidt L., Kaczmarczyk R., Jitsev J.: LAION-5B: An open large-scale dataset for training next generation image-text models Advances in Neural Information Processing Systems. Vol. 35 (2022) https://doi.org/10.48550/arXiv.2210.08402
48. Hu E., Shen Y., Wallis P., Allen-Zhu Z., Li Y., Wang S., Wang L., Chen W.: LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS ICLR 2022 – 10th International Conference on Learning Representations (2022) https://doi.org/10.48550/arXiv.2106.09685