Jasper Vermeulen , Glenda Amayo Caldwell , Muge Belek Fialho Teixeira , Alan Burden , Matthias Guertler
pp. 42 - 65, view paper, download
(https://doi.org/10.55612/s-5002-061-001), Google Scholar
Issue N. 61, Summer 2024
This scoping review explores human factors that enrich the design of Human-Robot Collaboration (HRC) beyond the traditional focus on ergonomics and safety. As Industry 5.0 shifts towards a human-centric perspective, understanding the multifaceted interactions within socio-technical systems becomes crucial. The review investigates diverse fields, including design, psychology, and engineering, to identify human factors influencing the successful integration of Collaborative Robotics. The research findings confirm the need and potentiality of using the holistic lens of human factors to illuminate human-centric needs in HRC designs. Moving beyond quantitative measures, the study advocates for qualitative insights to inform the design of HRC and enhance worker conditions through individualised and contextualised experiences of collaborating with cobots. The findings contribute to advancing the understanding of HRC’s complexity and underscore the significance of user-driven perspectives in future research and design efforts.
CRediT author statement: Jasper Vermeulen: Conceptualisation, Methodology, Formal analysis, Writing – original draft preparation. Glenda Caldwell: Supervision, Conceptualisation, Writing – review and editing. Müge Teixeira: Supervision, Conceptualisation, Writing – review and editing. Alan Burden: Supervision, Conceptualisation, Writing – review and editing. Matthias Guertler: Supervision, Conceptualisation, Writing – review and editing.
Cite this article as:
Vermeulen J., Amayo Caldwell G., Teixeira M., Burden A., Guertler M.: To Safety and Beyond! A Scoping Review of Human Factors Enriching the Design of Human-Robot Collaboration., Interaction Design & Architecture(s) – IxD&A Journal, N.61, 2024, pp. 42–65, DOI: https://doi.org/10.55612/s-5002-061-001
References:
1. Matheson E., Minto R., Zampieri E.G.G., Faccio M., Rosati G.: Human-Robot Collaboration in Manufacturing Applications: A Review Robotics, 8, pp. 100 (2019)
https://doi.org/10.3390/robotics8040100
2. Reiman A., Kaivo-oja J., Parviainen E., Takala E.-P., Lauraeus T.: Human factors and ergonomics in manufacturing in the industry 4.0 context – A scoping review Technol. Soc., 65, pp. 101572 (2021)
https://doi.org/10.1016/j.techsoc.2021.101572
3. Gervasi R., Capponi M., Mastrogiacomo L., Franceschini F.: Manual assembly and Human-Robot Collaboration in repetitive assembly processes: a structured comparison based on human-centered performances Int. J. Adv. Manuf. Technol., 126, pp. 1213-1231 (2023)
https://doi.org/10.1007/s00170-023-11197-4
4. Rinaldi M., Caterino M., Fera M.: Sustainability of Human-Robot cooperative configurations: Findings from a case study Comput. Ind. Eng., 182, pp. 109383 (2023)
https://doi.org/10.1016/j.cie.2023.109383
5. Guertler M., Tomidei L., Sick N., Carmichael M., Paul G., Wambsganss A., Moreno V.H., Hussain S.: WHEN IS A ROBOT A COBOT? MOVING BEYOND MANUFACTURING AND ARM-BASED COBOT MANIPULATORS Proceedings of the Design Society, 3, pp. 3889-3898 (2023)
https://doi.org/10.1017/pds.2023.390
6. Burden A.G., Caldwell G.A., Guertler M.R.: Towards human-robot collaboration in construction: current cobot trends and forecasts Construction Robotics, 6, pp. 209-220 (2022)
https://doi.org/10.1007/s41693-022-00085-0
7. Kopp T., Baumgartner M., Kinkel S.: Success factors for introducing industrial human-robot interaction in practice: an empirically driven framework Int. J. Adv. Manuf. Technol., 112, pp. 685-704 (2021)
https://doi.org/10.1007/s00170-020-06398-0
8. Digo E., Pastorelli S., Gastaldi L.: A Narrative Review on Wearable Inertial Sensors for Human Motion Tracking in Industrial Scenarios Robotics, 11, pp. 138 (2022)
https://doi.org/10.3390/robotics11060138
9. Beuss F., Schmatz F., Stepputat M., Nokodian F., Fluegge W., Frerich B.: Cobots in maxillofacial surgery – challenges for workplace design and the human-machine-interface Procedia CIRP, 100, pp. 488-493 (2021)
https://doi.org/10.1016/j.procir.2021.05.108
10. Wang L., Gao R., Váncza J., Krüger J., Wang X.V., Makris S., Chryssolouris G.: Symbiotic human-robot collaborative assembly CIRP Ann., 68, pp. 701-726 (2019)
https://doi.org/10.1016/j.cirp.2019.05.002
11. Nahmad Vazquez A., Jabi W.: Robotic assisted design workflows: a study of key human factors influencing team fluency in human-robot collaborative design processes Archit. Sci. Rev., 62, pp. 409-423 (2019)
https://doi.org/10.1080/00038628.2019.1660611
12. Simões A.C., Pinto A., Santos J., Pinheiro S., Romero D.: Designing human-robot collaboration (HRC) workspaces in industrial settings: A systematic literature review Journal of Manufacturing Systems, 62, pp. 28-43 (2022)
https://doi.org/10.1016/j.jmsy.2021.11.007
13. Prati E., Peruzzini M., Pellicciari M., Raffaeli R.: How to include User eXperience in the design of Human-Robot Interaction Robot. Comput. Integr. Manuf., 68, pp. 102072 (2021)
https://doi.org/10.1016/j.rcim.2020.102072
14. Storm F.A., Chiappini M., Dei C., Piazza C., André E., Reißner N., Brdar I., Delle Fave A., Gebhard P., Malosio M., Peña Fernández A., Štefok S., Reni G.: Physical and mental well-being of cobot workers: A scoping review using the Software-Hardware-Environment-Liveware-Liveware-Organization model Hum. Factors Ergon. Manuf., 32, pp. 419-435 (2022)
https://doi.org/10.1002/hfm.20952
15. Hopko S., Wang J., Mehta R.: Human Factors Considerations and Metrics in Shared Space Human-Robot Collaboration: A Systematic Review Front Robot AI, 9, pp. 799522 (2022)
https://doi.org/10.3389/frobt.2022.799522
16. Cardoso A., Colim A., Bicho E., Braga A.C., Menozzi M., Arezes P.: Ergonomics and Human Factors as a Requirement to Implement Safer Collaborative Robotic Workstations: A Literature Review Safety, 7, pp. 71 (2021)
https://doi.org/10.3390/safety7040071
17. Lorenzini M., Lagomarsino M., Fortini L., Gholami S., Ajoudani A.: Ergonomic human-robot collaboration in industry: A review Front Robot AI, 9, pp. 813907 (2022)
https://doi.org/10.3389/frobt.2022.813907
18. Tomidei L., Sick N., Guertler M., Frijat L., Carmichael M., Paul G., Wambsganss A., Moreno V.H., Hussain S.: Beyond technology – the cognitive and organisational impacts of cobots, https://opus.lib.uts.edu.au/rest/bitstreams/2307e650-4ec1-4b7e-97e4-3d06f54a0433/retrieve
19. Gualtieri L., Rauch E., Vidoni R.: Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review Robot. Comput. Integr. Manuf., 67, pp. 101998 (2021)
https://doi.org/10.1016/j.rcim.2020.101998
20. Colim A., Faria C., Cunha J., Oliveira J., Sousa N., Rocha L.A.: Physical ergonomic improvement and safe design of an assembly workstation through collaborative robotics Safety, 7, (2021)
https://doi.org/10.3390/safety7010014
21. Cai M., Liang R., Luo X., Liu C.: Task allocation strategies considering task matching and ergonomics in the human-robot collaborative hybrid assembly cell Int. J. Prod. Res., 61, pp. 7213-7232 (2023)
https://doi.org/10.1080/00207543.2022.2147234
22. Gualtieri L., Fraboni F., De Marchi M., Rauch E.: Development and evaluation of design guidelines for cognitive ergonomics in human-robot collaborative assembly systems Appl. Ergon., 104, pp. 103807 (2022)
https://doi.org/10.1016/j.apergo.2022.103807
23. Pinheiro S., Correia Simões A., Pinto A.: Ergonomics and safety in the design of industrial collaborative robotics: A systematic literature review Safety and Health III, (2021)
https://doi.org/10.1007/978-3-030-89617-1_42
24. Gervasi R., Aliev K., Mastrogiacomo L., Franceschini F.: User Experience and Physiological Response in Human-Robot Collaboration: A Preliminary Investigation Journal of Intelligent and Robotic Systems: Theory and Applications, 106, (2022)
https://doi.org/10.1007/s10846-022-01744-8
25. Pollak A., Paliga M., Pulopulos M.M., Kozusznik B., Kozusznik M.W.: Stress in manual and autonomous modes of collaboration with a cobot Comput. Human Behav., 112, (2020)
https://doi.org/10.1016/j.chb.2020.106469
26. Adriaensen A., Costantino F., Di Gravio G., Patriarca R.: Teaming with industrial cobots: A socio?technical perspective on safety analysis Hum. Factors Ergon. Manuf., 32, pp. 173-198 (2022)
https://doi.org/10.1002/hfm.20939
27. Gualtieri L., Palomba I., Merati F.A., Rauch E., Vidoni R.: Design of human-centered collaborative assembly workstations for the improvement of operators’ physical ergonomics and production efficiency: A case study Sustainability (Switzerland), 12, (2020)
https://doi.org/10.3390/su12093606
28. Prati E., Villani V., Grandi F., Peruzzini M., Sabattini L.: Use of Interaction Design Methodologies for Human-Robot Collaboration in Industrial Scenarios IEEE Trans. Autom. Sci. Eng., 19, pp. 3126-3138 (2022)
https://doi.org/10.1109/TASE.2021.3107583
29. Panchetti T., Pietrantoni L., Puzzo G., Gualtieri L., Fraboni F.: Assessing the Relationship between Cognitive Workload, Workstation Design, User Acceptance and Trust in Collaborative Robots Applied Sciences (Switzerland), 13, (2023)
https://doi.org/10.3390/app13031720
30. Charalambous G., Fletcher S., Webb P.: The Development of a Scale to Evaluate Trust in Industrial Human-robot Collaboration International Journal of Social Robotics, 8, pp. 193-209 (2016)
https://doi.org/10.1007/s12369-015-0333-8
31. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., Chou R., Glanville J., Grimshaw J.M., Hróbjartsson A., Lalu M.M., Li T., Loder E.W., Mayo-Wilson E., McDonald S., McGuinness L.A., Stewart L.A., Thomas J., Tricco A.C., Welch V.A., Whiting P., Moher D.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews BMJ, 372, pp. n71 (2021)
https://doi.org/10.1136/bmj.n71
32. Colquhoun H.L., Levac D., O’Brien K.K., Straus S., Tricco A.C., Perrier L., Kastner M., Moher D.: Scoping reviews: time for clarity in definition, methods, and reporting J. Clin. Epidemiol., 67, pp. 1291-1294 (2014)
https://doi.org/10.1016/j.jclinepi.2014.03.013
33. Abdulazeem N., Hu Y.: Human Factors Considerations for Quantifiable Human States in Physical Human-Robot Interaction: A Literature Review Sensors , 23, (2023)
https://doi.org/10.20944/preprints202306.0131.v1
34. Neumann W.P., Winkelhaus S., Grosse E.H., Glock C.H.: Industry 4.0 and the human factor – A systems framework and analysis methodology for successful development Int. J. Prod. Econ., 233, pp. 107992 (2021)
https://doi.org/10.1016/j.ijpe.2020.107992
35. Di Pasquale V., De Simone V., Giubileo V., Miranda S.: A taxonomy of factors influencing worker’s performance in human-robot collaboration IET Collaborative Intelligent Manufacturing, 5, (2023)
https://doi.org/10.1049/cim2.12069
36. Apraiz A., Lasa G., Mazmela M.: Evaluation of User Experience in Human-Robot Interaction: A Systematic Literature Review International Journal of Social Robotics, 15, pp. 187-210 (2023)
https://doi.org/10.1007/s12369-022-00957-z
37. Berx N., Decré W., Morag I., Chemweno P., Pintelon L.: Identification and classification of risk factors for human-robot collaboration from a system-wide perspective Comput. Ind. Eng., 163, (2022)
https://doi.org/10.1016/j.cie.2021.107827
38. Borges G.D., Mattos D.L., Cardoso A., Gonçalves H., Pombeiro A., Colim A., Carneiro P., Arezes P.M.: Simulating Human-Robot Collaboration for Improving Ergonomics and Productivity in an Assembly Workstation: A Case Study Studies in Systems, Decision and Control. vol. 406. pp. 369-377. Springer Science and Business Media Deutschland GmbH (2022)
https://doi.org/10.1007/978-3-030-89617-1_33
39. Çi?dem ?., Meidute-Kavaliauskiene I., Y?ld?z B.: Industry 4.0 and Industrial Robots: A Study from the Perspective of Manufacturing Company Employees Logistics, 7, (2023)
https://doi.org/10.3390/logistics7010017
40. Colim A., Morgado R., Carneiro P., Costa N., Faria C., Sousa N., Rocha L.A., Arezes P.: Lean manufacturing and ergonomics integration: Defining productivity and wellbeing indicators in a human-robot workstation Sustainability (Switzerland), 13, pp. 1-21 (2021)
https://doi.org/10.3390/su13041931
41. Coronado E., Kiyokawa T., Ricardez G.A.G., Ramirez-Alpizar I.G., Venture G., Yamanobe N.: Evaluating quality in human-robot interaction: A systematic search and classification of performance and human-centered factors, measures and metrics towards an industry 5.0 Journal of Manufacturing Systems, 63, pp. 392-410 (2022)
https://doi.org/10.1016/j.jmsy.2022.04.007
42. Faccio M., Granata I., Menini A., Milanese M., Rossato C., Bottin M., Minto R., Pluchino P., Gamberini L., Boschetti G., Rosati G.: Human factors in cobot era: a review of modern production systems features J. Intell. Manuf., 34, pp. 85-106 (2023)
https://doi.org/10.1007/s10845-022-01953-w
43. Heydaryan S., Suaza Bedolla J., Belingardi G.: Safety Design and Development of a Human-Robot Collaboration Assembly Process in the Automotive Industry NATO Adv. Sci. Inst. Ser. E Appl. Sci., 8, pp. 344 (2018)
https://doi.org/10.3390/app8030344
44. Koppenborg M., Nickel P., Naber B., Lungfiel A., Huelke M.: Effects of movement speed and predictability in human-robot collaboration Hum. Factors Ergon. Manuf., 27, pp. 197-209 (2017)
https://doi.org/10.1002/hfm.20703
45. Lu L., Xie Z., Wang H., Li L., Xu X.: Mental stress and safety awareness during human-robot collaboration – Review Appl. Ergon., 105, pp. 103832 (2022)
https://doi.org/10.1016/j.apergo.2022.103832
46. Maurtua I., Ibarguren A., Kildal J., Susperregi L., Sierra B.: Human-robot collaboration in industrial applications: Safety, interaction and trust Int. J. Adv. Rob. Syst., 14, pp. 1-10 (2017)
https://doi.org/10.1177/1729881417716010
47. Meissner A., Trübswetter A., Conti-Kufner A.S., Schmidtler J.: Friend or Foe Understanding Assembly Workers’ Acceptance of Human-robot Collaboration ACM Transactions on Human-Robot Interaction, 10, (2020)
https://doi.org/10.1145/3399433
48. Merlo E., Lamon E., Fusaro F., Lorenzini M., Carfì A., Mastrogiovanni F., Ajoudani A.: An ergonomic role allocation framework for dynamic human-robot collaborative tasks Journal of Manufacturing Systems, 67, pp. 111-121 (2023)
https://doi.org/10.1016/j.jmsy.2022.12.011
49. Pantano M., Yang Q., Blumberg A., Reisch R., Hauser T., Lutz B., Regulin D., Kamps T., Traganos K., Lee D.: Influence of task decision autonomy on physical ergonomics and robot performances in an industrial human-robot collaboration scenario Front Robot AI, 9, pp. 943261 (2022)
https://doi.org/10.3389/frobt.2022.943261
50. Rubagotti M., Tusseyeva I., Baltabayeva S., Summers D., Sandygulova A.: Perceived safety in physical human-robot interaction-A survey Rob. Auton. Syst., 151, pp. 104047 (2022)
https://doi.org/10.1016/j.robot.2022.104047
51. Pasparakis A., De Vries J., De Koster R.: Assessing the impact of human-robot collaborative order picking systems on warehouse workers Int. J. Prod. Res., 61, pp. 7776-7790 (2023)
https://doi.org/10.1080/00207543.2023.2183343
52. Aéraïz-Bekkis D., Ganesh G., Yoshida E., Yamanobe N.: Robot Movement Uncertainty Determines Human Discomfort in Co-worker Scenarios 2020 6th International Conference on Control, Automation and Robotics (ICCAR). pp. 59-66. ieeexplore.ieee.org (2020)
https://doi.org/10.1109/ICCAR49639.2020.9108085
53. Carissoli C., Negri L., Bassi M., Storm F.A., Delle Fave A.: Mental Workload and Human-Robot Interaction in Collaborative Tasks: A Scoping Review Int. J. Hum. Comput. Interact., (2023)
https://doi.org/10.1080/10447318.2023.2254639
54. Fraboni F., Gualtieri L., Millo F., De Marchi M., Pietrantoni L., Rauch E.: Human-Robot Collaboration During Assembly Tasks: The Cognitive Effects of Collaborative Assembly Workstation Features Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021). pp. 242-249. Springer International Publishing (2022)
https://doi.org/10.1007/978-3-030-74614-8_29
55. Gualtieri L., Fraboni F., De Marchi M., Rauch E.: Evaluation of Variables of Cognitive Ergonomics in Industrial Human-Robot Collaborative Assembly Systems Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021). pp. 266-273. Springer International Publishing (2022)
https://doi.org/10.1007/978-3-030-74614-8_32
56. Hopko S.K., Khurana R., Mehta R.K., Pagilla P.R.: Effect of Cognitive Fatigue, Operator Sex, and Robot Assistance on Task Performance Metrics, Workload, and Situation Awareness in Human-Robot Collaboration IEEE Robotics and Automation Letters, 6, pp. 3049-3056 (2021)
https://doi.org/10.1109/LRA.2021.3062787
57. Paliga M.: Human-cobot interaction fluency and cobot operators’ job performance. The mediating role of work engagement: A survey Rob. Auton. Syst., 155, (2022)
https://doi.org/10.1016/j.robot.2022.104191
58. Adamides G., Edan Y.: Human-robot collaboration systems in agricultural tasks: A review and roadmap Comput. Electron. Agric., 204, (2023)
https://doi.org/10.1016/j.compag.2022.107541
59. Arai T., Kato R., Fujita M.: Assessment of operator stress induced by robot collaboration in assembly CIRP Ann., 59, pp. 5-8 (2010)
https://doi.org/10.1016/j.cirp.2010.03.043
60. Alhaji B., Prilla M., Rausch A.: Trust Dynamics and Verbal Assurances in Human Robot Physical Collaboration Front Artif Intell, 4, pp. 703504 (2021)
https://doi.org/10.3389/frai.2021.703504
61. Arntz A., Eimler S.C., Ulrich Hoppe H.: “The Robot-Arm Talks Back to Me” – Human Perception of Augmented Human-Robot Collaboration in Virtual Reality 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). pp. 307-312. IEEE (2020)
https://doi.org/10.1109/AIVR50618.2020.00062
62. Charalambous G., Fletcher S.R., Webb P.: The development of a Human Factors Readiness Level tool for implementing industrial human-robot collaboration Int. J. Adv. Manuf. Technol., 91, pp. 2465-2475 (2017)
https://doi.org/10.1007/s00170-016-9876-6
63. Cheatle A., Pelikan H., Jung M., Jackson S.: Sensing (Co)operations: Articulation and Compensation in the Robotic Operating Room Proc. ACM Hum.-Comput. Interact., 3, pp. 1-26 (2019)
https://doi.org/10.1145/3359327
64. Gervasi R., Mastrogiacomo L., Franceschini F.: A conceptual framework to evaluate human-robot collaboration Int. J. Adv. Manuf. Technol., 108, pp. 841-865 (2020)
https://doi.org/10.1007/s00170-020-05363-1
65. Hancock P.A., Billings D.R., Schaefer K.E., Chen J.Y.C., de Visser E.J., Parasuraman R.: A meta-analysis of factors affecting trust in human-robot interaction Hum. Factors, 53, pp. 517-527 (2011)
https://doi.org/10.1177/0018720811417254
66. Inkulu K.A., Raju B.M.V., Dara A., SankaranarayanaSamy K.: Challenges and opportunities in human robot collaboration context of Industry 4.0 – a state of the art review Industrial Robot: the international journal of robotics research and application, 49, pp. 226-239 (2021)
https://doi.org/10.1108/IR-04-2021-0077
67. Jacob F., Grosse E.H., Morana S., König C.J.: Picking with a robot colleague: A systematic literature review and evaluation of technology acceptance in human-robot collaborative warehouses Comput. Ind. Eng., 180, (2023)
https://doi.org/10.1016/j.cie.2023.109262
68. Liu Y., Habibnezhad M., Jebelli H.: Brainwave-driven human-robot collaboration in construction Autom. Constr., 124, pp. 103556 (2021)
https://doi.org/10.1016/j.autcon.2021.103556
69. Liao S., Lin L., Chen Q.: Research on the acceptance of collaborative robots for the industry 5.0 era — The mediating effect of perceived competence and the moderating effect of robot use self-efficacy Int. J. Ind. Ergon., 95, pp. 103455 (2023)
https://doi.org/10.1016/j.ergon.2023.103455
70. Michaelis J.E., Siebert-Evenstone A., Shaffer D.W., Mutlu B.: Collaborative or Simply Uncaged? Understanding Human-Cobot Interactions in Automation Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. pp. 1-12. Association for Computing Machinery, New York, NY, USA (2020)
https://doi.org/10.1145/3313831.3376547
71. Pelikan H.R.M., Jung M.F.: Designing Robot Sound-In-Interaction: The Case of Autonomous Public Transport Shuttle Buses Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction. pp. 172-182. Association for Computing Machinery, New York, NY, USA (2023)
https://doi.org/10.1145/3568162.3576979
72. Ye Y., You H., Du J.: Improved Trust in Human-Robot Collaboration With ChatGPT IEEE Access, 11, pp. 55748-55754 (2023)
https://doi.org/10.1109/ACCESS.2023.3282111
73. Wang Q., Liu H., Ore F., Wang L., Hauge J.B., Meijer S.: Multi-actor perspectives on human robotic collaboration implementation in the heavy automotive manufacturing industry – A Swedish case study Technol. Soc., 72, (2023)
https://doi.org/10.1016/j.techsoc.2022.102165
74. Bröhl C., Nelles J., Brandl C., Mertens A., Nitsch V.: Human-Robot Collaboration Acceptance Model: Development and Comparison for Germany, Japan, China and the USA International Journal of Social Robotics, 11, pp. 709-726 (2019)
https://doi.org/10.1007/s12369-019-00593-0
75. Paliga M., Pollak A.: Development and validation of the fluency in human-robot interaction scale. A two-wave study on three perspectives of fluency Int. J. Hum. Comput. Stud., 155, pp. 102698 (2021)
https://doi.org/10.1016/j.ijhcs.2021.102698
76. Lagomarsino M., Lorenzini M., Balatti P., Momi E.D., Ajoudani A.: Pick the Right Co-Worker: Online Assessment of Cognitive Ergonomics in Human-Robot Collaborative Assembly IEEE Transactions on Cognitive and Developmental Systems, pp. 1-1 (2022) 10.1109/TCDS.2022.3182811
77. Kadylak T., Bayles M.A., Rogers W.A.: Are Friendly Robots Trusted More? An Analysis of Robot Sociability and Trust Robotics, 12, pp. 162 (2023)
https://doi.org/10.3390/robotics12060162
78. De Santis A., Siciliano B., De Luca A., Bicchi A.: An atlas of physical human-robot interaction Mechanism and Machine Theory, 43, pp. 253-270 (2008)
https://doi.org/10.1016/j.mechmachtheory.2007.03.003