Article_snip

Laura Tomidei, Nathalie Sick, Gavin Paul, Marc Carmichael
pp. 66 - 97, view paper, download
(https://doi.org/10.55612/s-5002-061-002), Google Scholar

Submitted on 31 Jan 2024 - Accepted on 30 Jun 2024

Interaction Design and Architecture(s) IxD&A Journal
Issue N. 61, Summer 2024

Abstract

With the development of collaborative robots (cobots), a paradigm shift in human-robot collaboration (HRC) is emerging in the workplace. When introducing cobots, a new range of hazards and harms needs to be considered. While physical hazards have been extensively studied and were paramount in the development of cobots, lesser-known hazards are related to mental and ethical wellbeing. Accordingly, most existing safety measures are designed to address exclusively physical hazards including ergonomics. To this end, this study sets out to develop holistic design principles for safe HRC by adopting a human-centred approach. A systematic review of the relevant literature combined with real-world insights gathered through interviews with industry and academic experts leads to design principles for safe HRC that can contribute to the future development of collaborative robot systems. This also highlights challenges which future research around safety guidelines and standards needs to address.

Keywords:

CRediT author statement: Laura Tomidei: Methodology, Formal analysis, Writing – original draft preparation. Matthias Guertler: Conceptualisation, Methodology, Formal analysis, Validation, Writing – Review and Editing. Nathalie Sick: Methodology, Validation, Formal Analysis, Writing – Review and Editing. Gavin Paul: Validation, Writing – Review and Editing. Marc Carmichael: Validation, Writing – Review and Editing.

Cite this article as:
Tomidei L., Sick N., Paul G., Carmichael M.: Design Principles for Safe Human Robot Collaboration., Interaction Design & Architecture(s) – IxD&A Journal, N.61, 2024, pp. 66–97, DOI: https://doi.org/10.55612/s-5002-061-002

References:

1. Tchane Djogdom G.V., Otis M.J.D., Meziane R.: Dynamic time warping–based feature selection method for foot gesture cobot operation mode selection, International Journal of Advanced Manufacturing Technology, 126, pp. 4521–4541 (2023), doi: 10.1007/s00170-023-11280-w
2. ISO 10218-2: Robots and robotic devices — Safety requirements for industrial robots, Part 2: Robot systems and integration (ISO 10218-2:2011) BSI Standards Publication (2011)
3. ISO 10218-1: Robots and robotic devices — Safety requirements for industrial robots, Part 1: Robots (ISO 10218-1:2011) BSI Standards Publication, pp. Annex A-List of significant hazards (2014)
4. Haddadin S., Croft E.: Physical Human–Robot Interaction, Springer Handbooks, pp. 1835–1874 (2016), doi: 10.1007/978-3-319-32552-1_69/FIGURES/30
5. Centre for Work Health and Safety NSW, University of Technology Sydney, Centre for Inclusive Design, Kairos Now: Phase 2 report: Work health and safety risks and harms of cobots, (2021)
6. Dobra Z., Dhir K.S.: Technology jump in the industry: human–robot cooperation in production, Industrial Robot, 47(5), pp 757-775 (2020), doi: 10.1108/IR-02-2020-0039
7. ISO/TS 15066: PD ISO / TS 15066?: 2016 “Robots and robotic devices — Collaborative robots” International Standards Organisation (ISO) (2016)
8. Baxter G., Sommerville I.: Socio-technical systems: From design methods to systems engineering, Interacting with Computers, 23(1), pp. 4–17 (2011), doi: 10.1016/j.intcom.2010.07.003
9. Davies R., Coole T., Smith A.: Review of Socio-technical Considerations to Ensure Successful Implementation of Industry 4.0, Procedia Manufacturing, 11, pp. 1288–1295 (2017), doi: 10.1016/j.promfg.2017.07.256
10. Kopp T., Baumgartner M., Kinkel S.: Success factors for introducing industrial human-robot interaction in practice: an empirically driven framework, International Journal of Advanced Manufacturing Technology, (2020), doi: 10.1007/s00170-020-06398-0
11. Guertler M., Carmichael M., Paul G., Sick N., Tomidei L., Hernandez Moreno V., Wambsganss A., Amin M., Grace R., Cockburn J., Frijat L., Hussain S.: Guidelines for the Safe Collaborative Robot Design and Implementation, NSW Government: Centre for Work Health and Safety (2022)
12. Zacharaki A., Kostavelis I., Gasteratos A., Dokas I.: Safety bounds in human robot interaction?: A survey, Safety Science, 127, pp. 104667 (2020), DOI: 10.1016/j.ssci.2020.104667
13. ISO 26800: Ergonomics — General approach, principles and concepts, (2011)
14. International Ergonomics Association: What Is Ergonomics?, https://iea.cc/what-is-ergonomics/
15. Stramler J.H.: The Dictionary for Human Factors, Routledge, (1993), doi: 10.1201/9780203736890
16. Tomidei L., Sick N., Guertler M., Frijat L., Carmichael M., Paul G., Wambsganss A., Moreno V.H., Hussain S.: BEYOND TECHNOLOGY-THE COGNITIVE AND ORGANISATIONAL IMPACTS OF COBOTS, in Australasian Conference on Robotics and Automation ACRA (2022)
17. Levy Y., Ellis T.J.: A systems approach to conduct an effective literature review in support of information systems research, Informing Science, 9, pp. 181–211 (2006), doi: 10.28945/479
18. DiCicco-Bloom B., Crabtree B.F.: The qualitative research interview, Medical Education, 40(4), pp. 314–321 (2006), doi: 10.1111/j.1365-2929.2006.02418.x
19. Martin-Martin A., Orduna-Malea E., Thelwall M., Lopez-Cozar E.D.: Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories, Journal of Informatics, 12, pp. 1160–1177 (2018), doi: 10.1016/J.JOI.2018.09.002
20. Karen H., Sandra J.: Contextual Inquiry: A Participatory Technique for System Design, Participatory Design. pp. 177–210. CRC Press (2017), doi: 10.1201/9780203744338-9
21. Corbin J.M., Strauss A.: Grounded theory research: Procedures, canons, and evaluative criteria, Qualitative Sociology, 13(1), pp. 3–21 (1990), doi: 10.1007/BF00988593
22. Bauer A., Wollherr D., Buss M.: Human–Robot Collaboration: A Survey International Journal of Humanoid Robotics, 5(1), pp. 47–66 (2008), doi: 10.1142/S0219843608001303
23. Khalid A., Kirisci P.T., Ghrairi Z., Pannek J.: Implementing safety and security concepts for human-robot collaboration in the context of Industry 4.0, in 39th MATADOR Conference, pp. 2–8 (2017)
24. Maurtua I., Ibarguren A., Kildal J., Susperregi L., Sierra B.: Human-robot collaboration in industrial applications: Safety, interaction and trust, International Journal of Advanced Robotic Systems, 14(4), pp. 1–10 (2017), doi: 10.1177/1729881417716010
25. Michalos G., Makris S., Spiliotopoulos J., Misios I., Tsarouchi P., Chryssolouris G.: ROBO-PARTNER: Seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future, Procedia CIRP, 23, pp. 71–76 (2014), doi: 10.1016/j.procir.2014.10.079
26. Michalos G., Kousi N., Karagiannis P., Gkournelos C., Dimoulas K., Koukas S., Mparis K., Papavasileiou A., Makris S.: Seamless human robot collaborative assembly – An automotive case study, Mechatronics, 55, pp. 194–211 (2018), doi: 10.1016/j.mechatronics.2018.08.006
27. Villani V., Pini F., Leali F., Secchi C.: Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications, Mechatronics, 55, pp. 248–266 (2018), doi: 10.1016/j.mechatronics.2018.02.009
28. Galin, R., Meshcheryakov, R.: Review on Human–Robot Interaction During Collaboration in a Shared Workspace, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2019), doi: 10.1007/978-3-030-26118-4_7/FIGURES/2
29. Murashov V., Hearl F., Howard J.: Working safely with robot workers: Recommendations for the new workplace, Journal of Occupation and Environment Hygene, 13(3), pp. D61–D71 (2016), doi: 10.1080/15459624.2015.1116700
30. Robla-Gomez S., Becerra V.M., Llata J.R., Gonzalez-Sarabia E., Torre-Ferrero C., Perez-Oria J.: Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments, IEEE Access, 5, pp. 26754–26773 (2017), doi: 10.1109/ACCESS.2017.2773127
31. Bröhl C., Nelles J., Brandl C., Mertens A., Schlick C.M.: TAM reloaded: A technology acceptance model for human-robot cooperation in production systems, Communications in Computer and Information Science, 617, pp. 97–103 (2016), doi: 10.1007/978-3-319-40548-3_16
32. Gervasi R., Mastrogiacomo L., Franceschini F.: A conceptual framework to evaluate human-robot collaboration, International Journal of Advanced Manufacturing Technology, 108, pp. 841–865 (2020), doi: 10.1007/s00170-020-05363-1
33. Sauppé A., Mutlu B.: The social impact of a robot co-worker in industrial settings, in Conference on Human Factors in Computing Systems – Proceedings, 2015-April, pp. 3613–3622 (2015), doi: 10.1145/2702123.2702181
34. Lewis M., Sycara K., Walker P.: The Role of Trust in Human-Robot Interaction, Studies in Systems, Decisions, Control, 117, pp. 135-159 (2018), doi: 10.1007/978-3-319-64816-3_8
35. Weiss A., Wortmeier A.K., Kubicek B.: Cobots in Industry 4.0: A Roadmap for Future Practice Studies on Human-Robot Collaboration, IEEE Transactions on Human Machine Systems, 51, pp. 335–345 (2021), doi: 10.1109/THMS.2021.3092684
36. Bi Z.M., Luo M., Miao Z., Zhang B., Zhang W.J., Wang L.: Safety assurance mechanisms of collaborative robotic systems in manufacturing, Robotics and Computer Integrated Manufacturing, 67, (2021), doi: 10.1016/j.rcim.2020.102022
37. Khalid A., Kirisci P., Khan Z.H., Ghrairi Z., Thoben K.D., Pannek J.: Security framework for industrial collaborative robotic cyber-physical systems, Computers in Industry, 97, pp. 132–145 (2018), doi: 10.1016/j.compind.2018.02.009
38. Siciliano B., Khatib O.: Springer Handbook of Robotics (2016), doi: 10.1007/978-3-319-32552-1
39. Vysocky A., Novak P.: Human – Robot collaboration in industry, MM Science Journal, 2016-June, pp. 903–906 (2016), doi: 10.17973/MMSJ.2016_06_201611
40. Magrini E., Ferraguti F., Ronga A.J., Pini F., De Luca A., Leali F.: Human-robot coexistence and interaction in open industrial cells, Robotics and Computer-Integrated Manufacturing, 61, pp. 101846 (2020), doi: 10.1016/j.rcim.2019.101846
41. Aldini S., Carmichael M.G., Liu D.: A risk reduction framework for design of physical human-robot collaboration Australasian Conference on Robotics and Automation, ACRA, 2019-Decem, (2019), http://hdl.handle.net/10453/137199
42. Gualtieri L., Rauch E., Vidoni R.: Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review Robotics and Computer-Integrated Manufacturing, 67, pp. 101998 (2021), doi: 10.1016/j.rcim.2020.101998
43. Elkmann N., Behrens R.: New approaches to improve the design of HRC robot applications (computer-aided safety), in IROS 2019 (2019)
44. Stengel D., Ostermann B., Ding H., Bortot D., Schiller F., Stursberg O., Bengler K., Huelke M., Som F., Strunz U.: An Approach for Safe and Efficient Human-Robot Collaboration, in 6th International Conference Safety of Industrial Automated Systems SIAS 2010 (2010), (2010)
45. Bavle H., Luis Sanchez-Lopez J., Cimarelli C., Tourani A., Voos H.: From SLAM to Situational Awareness: Challenges and Survey, Sensors, 10 (2023), doi: 10.3390/s23104849
46. Sutjipto S., Carmichael M.G., Paul G.: Comparison of strength profile representations using musculoskeletal models and their applications in robotics, Frontiers in Robotics and AI, 10, pp. 1265635 (2023), doi: 10.3389/FROBT.2023.1265635/BIBTEX
47. Pearce M., Mutlu B., Shah J., Radwin R.: Optimizing Makespan and Ergonomics in Integrating Collaborative Robots into Manufacturing Processes, IEEE Transactions on Automation Science and Engineering, 15, pp. 1772–1784 (2018), doi: 10.1109/TASE.2018.2789820
48. Michalos G., Makris S., Tsarouchi P., Guasch T., Kontovrakis D., Chryssolouris G.: Design Considerations for Safe Human-robot Collaborative Workplaces, Procedia CIRP, 37, pp. 248–253 (2015), doi: 10.1016/j.procir.2015.08.014
49. Huck T.P., Münch N., Hornung L., Ledermann C., Wurll C.: Risk assessment tools for industrial human-robot collaboration: Novel approaches and practical needs, Safety Science, 141, pp. 105288 (2021), doi: 10.1016/j.ssci.2021.105288
50. Kildal J., Tellaeche A., Fernández I., Maurtua I.: Potential users’ key concerns and expectations for the adoption of cobots, Procedia CIRP, 72, pp. 21-26 (2018), doi: 10.1016/j.procir.2018.03.104
51. Simões A.C., Pinto A., Santos J., Pinheiro S., Romero D.: Designing human-robot collaboration (HRC) workspaces in industrial settings: A systematic literature review, Journal of Manufacturing Systems, (2022), doi: https://doi.org/10.1016/j.jmsy.2021.11.007
52. Faccio M., Granata I., Menini A., Milanese M., Rossato C., Bottin M., Minto R., Pluchino P., Gamberini L., Boschetti G., Rosati G.: Human factors in cobot era: a review of modern production systems features, Journal of Intelligent Manufacturing, (2022), doi: 10.1007/s10845-022-01953-w
53. Cherubini A., Passama R., Crosnier A., Lasnier A., Fraisse P.: Collaborative manufacturing with physical human-robot interaction, Robotics and Computer-Integrated Manufacturing, 40, pp. 1–13 (2016), doi: 10.1016/j.rcim.2015.12.007
54. Probst L., Frideres L., Pedersen B., Caputi C.: Service Innovation for Smart Industry EU Business Innovation Observatory (2015)
55. Carmichael M.G., Liu D., Waldron K.J.: A framework for singularity-robust manipulator control during physical human-robot interaction, The International Journal of Robotics Research, 36(5-7), pp. 861–876 (2017), doi: 10.1177/0278364917698748

back to Table of Contents