Oguz Orkun Doma, Sinan Mert Sener
pp. 234 – 258, download
(https://doi.org/10.55612/s-5002-052-013)
Abstract
In this paper, we propose a VR design tool framework called DREAMSCAPE, which adopts a direct manipulation approach focusing on embody, experience, and manipulation activities in design. The framework defines a VR design process using intuitive controls without being limited by the preconceptions of conventional CAD systems. To establish and demonstrate the framework, we designed and developed a VR design tool called Dreamscape Bricks VR in Unreal Engine 4, using LEGO bricks as base components in a high-fidelity interactive design environment. We conducted user tests and administered questionnaires assessing usability, performance, and comfort. Results showed that the user experience of the tool is positive. The developed tool is expected to establish the abstract framework and provide insights into the future of VR design tools with implications on design education..
Keywords: virtual reality, architectural design, VR in design education, room-scale VR, metaverse.
References
1. Milgram P., Kishimo F.: A taxonomy of mixed reality, IEICE Transactions on Information and Systems, 77, pp. 1321–1329 (1994)
2. Jerald J.: The VR Book: Human-Centered Design for Virtual Reality, Association for Computing Machinery, (2015) https://doi.org/10.1145/2792790
3. Dunne A., Raby F.: Speculative Everything: Design Fiction, and Social Dreaming, MIT Press, Cambridge, MA, (2013)
4. Wang P., Wu P., Wang J., Chi H.-L., Wang X.: A Critical Review of the Use of Virtual Reality in Construction Engineering Education and Training, International Journal of Environmental Research and Public Health, 15, pp. 1204 (2018)
https://doi.org/10.3390/ijerph15061204
5. Milovanovic J., Moreau G., Siret D., Miguet F.: Virtual and Augmented Reality in Architectural Design and Education: An Immersive Multimodal Platform to Support Architectural Pedagogy, 17th International Conference, CAAD Futures 2017, Istanbul, Turkey, July 2017, pp. 513–532 (2017) https://hal.archives-ouvertes.fr/hal-01586746
6. Dede C.: Immersive Interfaces for Engagement and Learning, Science, 323, pp. 66–69 (2009) https://doi.org/10.1126/science.1167311
7. Köhler T., Münster S., Schlenker L.: Smart communities in virtual reality . A comparison of design approaches for academic education, pp. 48–59 (2014)
8. Puggioni M., Frontoni E., Paolanti M., Pierdicca R.: ScoolAR: an educational platform to improve students’ learning through Virtual Reality, IEEE Access, 9, pp. 1–1 (2021) https://doi.org/10.1109/ACCESS.2021.3051275
9. Pober E., Cook M.: Thinking in Virtual Spaces: Impacts of Virtual Reality on the Undergraduate Interior Design Process, International Journal of Virtual and Augmented Reality, 3, pp. 23–40 (2019) https://doi.org/10.4018/ijvar.2019070103
10. Aydin S., Aktas B.: Developing an Integrated VR Infrastructure in Architectural Design Education, Frontiers in Robotics and AI, 7, (2020) https://doi.org/10.3389/frobt.2020.495468
11. Fonseca D., Cavalcanti J., Peña E., Valls V., Sanchez-Sepúlveda M., Moreira F., Navarro I., Redondo E.: Mixed assessment of virtual serious games applied in architectural and urban design education, Sensors, 21, (2021) https://doi.org/10.3390/s21093102
12. Raikwar A., D’Souza N., Rogers C., Kress M., Williams A., Rishe N.D., Ortega F.R.: CubeVR: Digital affordances for architecture undergraduate education using virtual reality, 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 – Proceedings, pp. 1623–1626 (2019) https://doi.org/10.1109/VR.2019.8798115
13. Gonsalves K., Foth M., Caldwell G.A.: Radical Placemaking: Utilizing Low-Tech AR / VR to engage in Communal Placemaking during a Pandemic, pp. 143–164 (2021)
14. Andolina S., Hsieh Y., Kalkofen D., Nurminen A., Cabral D., Spagnolli A., Gamberini L., Morrison A., Schmalstieg D., Jacucci G.: Designing for Mixed Reality Urban Exploration, pp. 33–49 (2021)
15. Economou M.: Heritage in the Digital Age, A Companion to Heritage Studies, pp. 215–228 (2015) https://doi.org/10.1002/9781118486634.ch15
16. Luigini A., Parricchi M., Basso A., Basso D.: Immersive and participatory serious games for heritage education , applied to the cultural heritage of South Tyrol ., pp. 42–67 (2019)
17. Banfi F., Brumana R., Stanga C.: Extended reality and informative models for the architectural heritage: from scan-to-BIM process to virtual and augmented reality, Virtual Archaeology Review, 10, pp. 14 (2019) https://doi.org/10.4995/var.2019.11923
18. Epic Games: Twinmotion, https://www.unrealengine.com/en-US/twinmotion
19. Suwa M., Tversky B.: What architects see in their sketches, Conference companion on Human factors in computing systems common ground – CHI ’96. pp. 191–192. ACM Press, New York, New York, USA (1996) https://doi.org/10.1145/257089.257255
20. Schon D.A., Wiggins G.: Kinds of seeing and their functions in designing, Design Studies, 13, pp. 135–156 (1992) https://doi.org/10.1016/0142-694X(92)90268-F
21. Shneiderman B.: Direct manipulation, ACM SIGSOC Bulletin, 13, pp. 143 (1982) https://doi.org/10.1145/1015579.810991
22. Coffey D., Chi-Lun Lin, Erdman A.G., Keefe D.F.: Design by Dragging: An Interface for Creative Forward and Inverse Design with Simulation Ensembles, IEEE Transactions on Visualization and Computer Graphics, 19, pp. 2783–2791 (2013) https://doi.org/10.1109/TVCG.2013.147
23. Gomes de Sá A., Zachmann G.: Integrating Virtual Reality for Virtual Prototyping, 18th Computers in Engineering Conference. vol. 6. American Society of Mechanical Engineers (1998) https://doi.org/10.1115/DETC98/CIE-5536
24. Holl M., Oberweger M., Arth C., Lepetit V.: Efficient Physics-Based Implementation for Realistic Hand-Object Interaction in Virtual Reality, 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). pp. 175–182. IEEE (2018) https://doi.org/10.1109/VR.2018.8448284
25. Sutherland I.E.: Sketchpad: A man-machine graphical communication system, SIMULATION, 2, pp. R-3-R-20 (1964) https://doi.org/10.1177/003754976400200514
26. Gross M.D.: Why can’t CAD be more like Lego? CKB, a program for building construction kits, Automation in Construction, 5, pp. 285–300 (1996) https://doi.org/10.1016/S0926-5805(96)00154-9
27. Tseng T., Resnick M.: Building Examples: Media and Learning Affordances, (2012)
28. Ranscombe C., Bissett-Johnson K., Mathias D., Eisenbart B., Hicks B.: Designing with LEGO: exploring low fidelity visualization as a trigger for student behavior change toward idea fluency, International Journal of Technology and Design Education, 30, pp. 367–388 (2020) https://doi.org/10.1007/s10798-019-09502-y
29. Doma O.O., Sener S.M.: Using Modular Construction Brick-Based CAD in Online Design Education, in MusicoGuia (ed.) Conference Proceedings CIVAE 2021. pp. 106–111. MusicoGuia, Madrid, Spain (2021)
30. Motschnig R., Pfeiffer D., Gawin A., Gawin P., Steiner M.: When Kids are Challenged to Solve Real Problems – Case Study on Transforming Learning with Interpersonal Presence and Digital Technologies ., pp. 88–111 (2017)
31. Siouli S., Dratsiou I., Antoniou P.E., Bamidis P.D.: Learning with Educational Robotics through Co-Creative Methodologies, pp. 29–46 (2019)
32. Turner C.: The LEGO® Brick in Architecture Studies, in Turner, C. (ed.) LEGO Architecture Studio: Create your own architecture. pp. 14–19. , Billund, Denmark (2014)
33. LEGO Group: The stud and tube principle, https://www.lego.com/en-us/history/articles/d-the-stud-and-tube-principle
34. Christiansen G.K.: Toy building brick, https://patents.google.com/patent/US3005282, (1961)
35. McMahan R.P., Lai C., Pal S.K.: Interaction Fidelity: The Uncanny Valley of Virtual Reality Interactions, Lecture Notes in Computer Science. vol. 9740. pp. 59–70. Springer, Cham (2016) https://doi.org/10.1007/978-3-319-39907-2_6
36. Bowman D.A., McMahan R.P., Ragan E.D.: Questioning naturalism in 3D user interfaces, Communications of the ACM, 55, pp. 78–88 (2012)
https://doi.org/10.1145/2330667.2330687
37. Rogers K., Funke J., Frommel J., Stamm S., Weber M.: Exploring interaction fidelity in virtual reality: Object manipulation and whole-body movements, Conference on Human Factors in Computing Systems – Proceedings, pp. 1–14 (2019)
https://doi.org/10.1145/3290605.3300644
38. Shum L.C., Valdés B.A., Van der Loos H.M.: Determining the Accuracy of Oculus Touch Controllers for Motor Rehabilitation Applications Using Quantifiable Upper Limb Kinematics: Validation Study, JMIR Biomedical Engineering, 4, pp. e12291 (2019) https://doi.org/10.2196/12291
39. Unity: Input for OpenVR controllers,
https://docs.unity3d.com/2019.1/Documentation/Manual/OpenVRControllers.html
40. Napier J.R.: The prehensile movements of the human hand, The Journal of Bone and Joint Surgery. British volume, 38-B, pp. 902–913 (1956) https://doi.org/10.1302/0301-620X.38B4.902
41. Santello M., Flanders M., Soechting J.F.: Postural Hand Synergies for Tool Use, (1998)
42. Jeannerod M., Arbib M.A., Rizzolatti G., Sakata H.: Grasping objects: the cortical mechanisms of visuomotor transformation, Trends in Neurosciences, 18, pp. 314–320 (1995) https://doi.org/10.1016/0166-2236(95)93921-J
43. Feix T., Romero J., Schmiedmayer H.-B., Dollar A.M., Kragic D.: The GRASP Taxonomy of Human Grasp Types, IEEE Transactions on Human-Machine Systems, 46, pp. 66–77 (2016) https://doi.org/10.1109/THMS.2015.2470657
44. Bowman D.A., Koller D., Hodges L.F.: A methodology for the evaluation of travel techniques for immersive virtual environments, Virtual Reality, 3, pp. 120–131 (1998) https://doi.org/10.1007/BF01417673
45. Nilsson N.C., Peck T., Bruder G., Hodgson E., Serafin S., Whitton M., Steinicke F., Rosenberg E.S.: 15 Years of Research on Redirected Walking in Immersive Virtual Environments, IEEE Computer Graphics and Applications, 38, pp. 44–56 (2018) https://doi.org/10.1109/MCG.2018.111125628
46. Bowman D.A., Hodges L.F.: Formalizing the Design, Evaluation, and Application of Interaction Techniques for Immersive Virtual Environments, Journal of Visual Languages & Computing, 10, pp. 37–53 (1999) https://doi.org/10.1006/jvlc.1998.0111
47. Templeman J.N., Denbrook P.S., Sibert L.E.: Virtual locomotion: Walking in place through virtual environments, Presence: Teleoperators and Virtual Environments, 8, pp. 598–617 (1999) https://doi.org/10.1162/105474699566512
48. Sun Q., Patney A., Wei L.-Y., Shapira O., Lu J., Asente P., Zhu S., Mcguire M., Luebke D., Kaufman A.: Towards virtual reality infinite walking, ACM Transactions on Graphics, 37, pp. 1–13 (2018) https://doi.org/10.1145/3197517.3201294
49. Boletsis C.: The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology, Multimodal Technologies and Interaction, 1, pp. 24 (2017) https://doi.org/10.3390/mti1040024
50. Bozgeyikli E., Raij A., Katkoori S., Dubey R.: Point & Teleport locomotion technique for virtual reality, CHI PLAY 2016 – Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, pp. 205–216 (2016) https://doi.org/10.1145/2967934.2968105
51. Bozgeyikli E., Raij A., Katkoori S., Dubey R.: Locomotion in virtual reality for room scale tracked areas, International Journal of Human Computer Studies, 122, pp. 38–49 (2019) https://doi.org/10.1016/j.ijhcs.2018.08.002
52. Buttussi F., Chittaro L.: Locomotion in Place in Virtual Reality: A Comparative Evaluation of Joystick, Teleport, and Leaning, IEEE Transactions on Visualization and Computer Graphics, 27, pp. 125–136 (2021) https://doi.org/10.1109/TVCG.2019.2928304
53. Heer J., Mackinlay J.D., Stolte C., Agrawala M.: Graphical histories for visualization: Supporting analysis, communication, and evaluation, IEEE Transactions on Visualization and Computer Graphics. vol. 14. pp. 1189–1196 (2008)
https://doi.org/10.1109/TVCG.2008.137
54. Gao L., Yu F., Chen Q., Xiong N.: Consistency maintenance of Do and Undo/Redo operations in real-time collaborative bitmap editing systems, Cluster Computing, 19, pp. 255–267 (2016) https://doi.org/10.1007/s10586-015-0499-8
55. Shneiderman B.: The eyes have it: a task by data type taxonomy for information visualizations, Proceedings 1996 IEEE Symposium on Visual Languages. pp. 336–343. IEEE Comput. Soc. Press (1996) https://doi.org/10.1109/VL.1996.545307
56. Cheng Y., He F., Wu Y., Zhang D.: Meta-operation conflict resolution for human–human interaction in collaborative feature-based CAD systems, Cluster Computing, 19, pp. 237–253 (2016) https://doi.org/10.1007/s10586-016-0538-0
57. Lee H., Kim J., Banerjee A.: Collaborative intelligent CAD framework incorporating design history tracking algorithm, Computer-Aided Design, 42, pp. 1125–1142 (2010) https://doi.org/10.1016/j.cad.2010.08.001
58. Kleinman E., Caro K., Zhu J.: From immersion to metagaming: Understanding rewind mechanics in interactive storytelling, Entertainment Computing, 33, pp. 100322 (2020) https://doi.org/10.1016/j.entcom.2019.100322
59. Kim M., Kim J., Jeong K., Kim C.: Grasping VR: Presence of Pseudo-Haptic Interface Based Portable Hand Grip System in Immersive Virtual Reality, International Journal of Human–Computer Interaction, 36, pp. 685–698 (2020)
https://doi.org/10.1080/10447318.2019.1680920
60. Masurovsky A., Chojecki P., Runde D., Lafci M., Przewozny D., Gaebler M.: Controller-Free Hand Tracking for Grab-and-Place Tasks in Immersive Virtual Reality: Design Elements and Their Empirical Study, Multimodal Technologies and Interaction, 4, pp. 91 (2020) https://doi.org/10.3390/mti4040091
61. Boud A.C., Haniff D.J., Baber C., Steiner S.J.: Virtual reality and augmented reality as a training tool for assembly tasks, Proceedings of the International Conference on Information Visualisation, 1999-January, pp. 32–36 (1999) https://doi.org/10.1109/IV.1999.781532
62. Anthes C., Garcia-Hernandez R.J., Wiedemann M., Kranzlmuller D.: State of the art of virtual reality technology, 2016 IEEE Aerospace Conference. vol. 2016-June. pp. 1–19. IEEE (2016) https://doi.org/10.1109/AERO.2016.7500674
63. Nielsen J., Molich R.: Heuristic evaluation of user interfaces, Proceedings of the SIGCHI conference on Human factors in computing systems Empowering people – CHI ’90. pp. 249–256. ACM Press, New York, New York, USA (1990) https://doi.org/10.1145/97243.97281
64. Nielsen J.: Enhancing the explanatory power of usability heuristics, Proceedings of the SIGCHI conference on Human factors in computing systems celebrating interdependence – CHI ’94. pp. 152–158. ACM Press, New York, NY (1994)
https://doi.org/10.1145/191666.191729
65. Nielsen J.: How to Conduct a Heuristic Evaluation, https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
66. Nielsen J.: 10 Usability Heuristics for User Interface Design,
https://www.nngroup.com/articles/ten-usability-heuristics/
67. Sutcliffe A., Gault B.: Heuristic evaluation of virtual reality applications, Interacting with Computers, 16, pp. 831–849 (2004) https://doi.org/10.1016/j.intcom.2004.05.001
68. Özkan O.: The compatibility of widely used presence questionnaires with current virtual reality technology, (2016)
69. Hartmann T., Wirth W., Schramm H., Klimmt C., Vorderer P., Gysbers A., Böcking S., Ravaja N., Laarni J., Saari T., Gouveia F., Maria Sacau A.: The Spatial Presence Experience Scale (SPES), Journal of Media Psychology, 28, pp. 1–15 (2016)
https://doi.org/10.1027/1864-1105/a000137
70. Kennedy R.S., Lane N.E., Berbaum K.S., Lilienthal M.G.: Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness, The International Journal of Aviation Psychology, 3, pp. 203–220 (1993) https://doi.org/10.1207/s15327108ijap0303_3
71. Balk S.A., Bertola M.A., Inman V.W.: Simulator Sickness Questionnaire: Twenty Years Later, Driving Assessment Conference. pp. 257–263 (2013)
https://doi.org/10.17077/drivingassessment.1498