Beverly Woolf, Danielle Allessio, Ivon Arroyo, Sai Gattupalli, Boming Zhang
pp. 28 – 62, download
(https://doi.org/10.55612/s-5002-064-001sp)
Abstract
Artificial intelligence (AI) has made large changes in major industries and disrupted or reorganized many disciplines. As a result, traditional educational practices need to be reexamined to enable learners to develop new skills, to manage and utilize new technologies and to increase productivity in a rapidly changing world. A more flexible educational system is required to enable life-long and life-wide upskilling and reskilling. This article provides four grand challenges for AI and education to optimize digital learning, online resources and virtual classrooms. It suggests several problems to address, visions to spur the field forward and strategies that will make teaching and learning more effective. The article also considers ethical use of technology, decreased jobs in some sectors and the possibility that AI will exacerbate an existing deficit in diversity and equity among students.
Keywords: Artificial Intelligence, Education Technology, Personalized Learning, Ethical AI, Intelligent Tutoring Systems, Workforce Development.
References
1. Adewumi T., Alkhaled L., Buck C., Hernandez S., Brilioth S., Kekung M., Ragimov Y., Barney E.: ProCoT: Stimulating Critical Thinking and Writing of Students through Engagement with Large Language Models (LLMs), http://arxiv.org/abs/2312.09801, (2023)
2. Ainscow M.: Every learner matters and matters equally: making education inclusive Conference High-level Policy Dialogue to Mark the 30th Anniversary of the Salamanca Statement, Paris, (2024) https://doi.org/10.4324/9781003504788-2
3. Aleven V., Roll I., McLaren B.M., Koedinger K.R.: Help Helps, But Only So Much: Research on Help Seeking with Intelligent Tutoring Systems Int J Artif Intell Educ, 26, pp. 205–223 (2016) https://doi.org/10.1007/s40593-015-0089-1
4. Arroyo I., Closser A.H., Castro F., Smith H., Ottmar E., Micciolo M.: The WearableLearning Platform: A Computational Thinking Tool Supporting Game Design and Active Play Tech Know Learn, 28, pp. 1815–1824 (2023) https://doi.org/10.1007/s10758-022-09601-1
5. Arroyo I., Cooper D.G., Burleson W., Woolf B.P., Muldner K., Christopherson R.: Emotion Sensors Go To School Artificial Intelligence in Education. pp. 17–24. IOS Press (2009) https://doi.org/10.3233/978-1-60750-028-5-17
6. Arroyo I., Micciollo M., Casano J., Ottmar E., Hulse T., Rodrigo Ma.M.: Wearable Learning: Multiplayer Embodied Games for Math Proceedings of the Annual Symposium on Computer-Human Interaction in Play. pp. 205–216. Association for Computing Machinery, New York, NY, USA (2017) https://doi.org/10.1145/3116595.3116637
7. Arroyo I., Royer J.M., Woolf B.P.: Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance International Journal of Artificial Intelligence in Education, 21, pp. 135–152 (2011)
8. Arroyo I., Woolf B.P., Burelson W., Muldner K., Rai D., Tai M.: A Multimedia Adaptive Tutoring System for Mathematics that Addresses Cognition, Metacognition and Affect Int J Artif Intell Educ, 24, pp. 387–426 (2014) https://doi.org/10.1007/s40593-014-0023-y
9. Association for Smart Learning Ecosystems and Regional Development (ASLERD): Troyes Declaration (Timisoara 2.0) – Better Learning for a Better World 2.0: People Centred Smart Learning Ecosystems beyond 2030, https://www.aslerd.org/troyes-declaration/, (2024)
10. Baker R.S.J. d.: Modeling and understanding students’ off-task behavior in intelligent tutoring systems Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 1059–1068. Association for Computing Machinery, New York, NY, USA (2007) https://doi.org/10.1145/1240624.1240785
11. Battula S.: Student Performance Analysis and Prediction,
https://www.analyticsvidhya.com/blog/2023/04/student-performance-analysis-and-prediction/, (2023)
12. Becher T.: 6. The Disciplinary Shaping of the Profession in Clark, B.R. (ed.) The Academic Profession. pp. 271–303. University of California Press (1987) https://doi.org/10.1525/9780520311329-009
13. Boggan M., Harper S., Whitmire A.: Using Manipulatives to Teach Elementary Mathematics Journal of Instructional Pedagogies, 3, (2010)
14. Brady J., Kuvalja M., Rodrigues A., Hughes S.: Does ChatGPT Make the Grade? Research Matters, (2024)
15. Bredeweg B., Arroyo I., Carney C., Mavrikis M., Timms M.: Intelligent environments Global Resources for Online Education Workshop, Brighton, UK (2009)
16. Bulathwela S., Pérez-Ortiz M., Holloway C., Shawe-Taylor J.: Could AI Democratise Education? Socio-Technical Imaginaries of an EdTech Revolution, http://arxiv.org/abs/2112.02034, (2021)
17. Bulathwela S., Pérez-Ortiz M., Holloway C., Cukurova M., Shawe-Taylor J.: Artificial Intelligence Alone Will Not Democratise Education: On Educational Inequality, Techno-Solutionism and Inclusive Tools Sustainability, 16, pp. 781 (2024) https://doi.org/10.3390/su16020781
18. Carnevale A.P., Strohl J., Ridley N., Gulish A.: Three Educational Pathways to Good Jobs: High School, Middle Skills, and Bachelor’s Degree (2018)
19. Choi J.H., Garrod O., Atherton P., Joyce-Gibbons A., Mason-Sesay M., Björkegren D.: Are LLMs Useful in the Poorest Schools? TheTeacher.AI in Sierra Leone, http://arxiv.org/abs/2310.02982, (2024)
20. Chun J., Barley N.: A Comparative Analysis of Multiple-Choice Questions: ChatGPT-Generated Items vs. Human-Developed Items in Chapelle, C., Beckett, G., and Ranalli, J. (eds.) Exploring AI in Applied Linguistics. pp. 118–136. Iowa State University Digital Press (2024)
21. Clancey W.J.: Knowledge-based tutoring: the GUIDON program, MIT Press, Cambridge, MA, USA, (1987) https://doi.org/10.31274/isudp.2024.154.08
22. Clarke D., Roche A.: Using contextualized tasks to engage students in meaningful and worthwhile mathematics learning The Journal of Mathematical Behavior, 51, pp. 95–108 (2018) https://doi.org/10.1016/j.jmathb.2017.11.006
23. Cobb P., Yackel E., Wood T.: A Constructivist Alternative to the Representational View of Mind in Mathematics Education (1992) https://doi.org/10.2307/749161
24. D’Mello S.K., Bosch N., Chen H.: Multimodal-multisensor affect detection The Handbook of Multimodal-Multisensor Interfaces: Signal Processing, Architectures, and Detection of Emotion and Cognition – Volume 2. vol. 21. pp. 167–202. Association for Computing Machinery and Morgan & Claypool (2018) https://doi.org/10.1145/3107990.3107998
25. D’Mello S., Lehman B., Sullins J., Daigle R., Combs R., Vogt K., Perkins L., Graesser A.: A Time for Emoting: When Affect-Sensitivity Is and Isn’t Effective at Promoting Deep Learning in Aleven, V., Kay, J., and Mostow, J. (eds.) Intelligent Tutoring Systems. pp. 245–254. Springer, Berlin, Heidelberg (2010) https://doi.org/10.1007/978-3-642-13388-6_29
26. Dede C.: Immersive Interfaces for Engagement and Learning Science, 323, pp. 66–69 (2009) https://doi.org/10.1126/science.1167311
27. Delgado K., Origgi J.M., Hasanpoor T., Yu H., Allessio D., Arroyo I., Lee W., Betke M., Woolf B., Bargal S.A.: Student Engagement Dataset Presented at the Proceedings of the IEEE/CVF International Conference on Computer Vision (2021) https://doi.org/10.1109/ICCVW54120.2021.00405
28. Digital S.: Global Education Monitoring Report 2020: Inclusion and education: All means all, https://resource-centre.savethechildren.net/document/global-education-monitoring-report-2020-inclusion-and-education-all-means-all/
29. Engler A.: Five ways that Open Source Software shapes AI policy, https://www.brookings.edu/articles/five-ways-that-open-source-software-shapes-ai-policy/
30. Ernst E., Merola R., Samaan D.: Sciendo IZA Journal of Labor Policy, 9, (2019) https://doi.org/10.2478/izajolp-2019-0004
31. Feng W., Lee J., McNichols H., Scarlatos A., Smith D., Woodhead S., Ornelas N.O., Lan A.: Exploring Automated Distractor Generation for Math Multiple-choice Questions via Large Language Models, http://arxiv.org/abs/2404.02124, (2024) https://doi.org/10.18653/v1/2024.findings-naacl.193
32. Fernandez N., Ghosh A., Liu N., Wang Z., Choffin B., Baraniuk R., Lan A.: Automated Scoring for Reading Comprehension via In-context BERT Tuning, http://arxiv.org/abs/2205.09864, (2023) https://doi.org/10.1007/978-3-031-11644-5_69
33. Foglia L., Wilson R.A.: Embodied cognition Wiley Interdiscip Rev Cogn Sci, 4, pp. 319–325 (2013) https://doi.org/10.1002/wcs.1226
34. Gao X., Li P., Shen J., Sun H.: Reviewing assessment of student learning in interdisciplinary STEM education International Journal of STEM Education, 7, pp. 24 (2020) https://doi.org/10.1186/s40594-020-00225-4
35. Gattupalli S., Castro F., Arroyo I.: Investigating Cultural Signatures in Game Designs of Middle School Students from Argentina, India, and the United States Presented at the June (2024) https://doi.org/10.22318/icls2024.138871
36. Gattupalli S., Lee W., Allessio D., Crabtree D., Arroyo I., Woolf B.: Exploring Pre-Service Teachers’ Perceptions of Large Language Models-Generated Hints in Online Mathematics Learning (2023)
37. Georgieva K.: AI Will Transform the Global Economy. Let’s Make Sure It Benefits Humanity IMF Blog (blog), International Monetary Fund, (2024)
38. Giovannella C.: “Learning by being”: integrated thinking and competencies to mark the difference from AIs, Interaction Design and Architecture(s) IxD&A, 57, pp. 8–26 (2023) https://doi.org/10.55612/s-5002-057-001
39. Goodell J., Heffernan N.: Human-Centered Learning Engineering for the Emerging Intelligence Augmentation Economy Presented at the November (2022) https://doi.org/10.1007/978-3-031-19682-9_78
40. Henry Carrick: Will Computers remove the need for teachers in the future? (2015)
41. Hollan J.D., Hutchins E.L., Weitzman L.: STEAMER: An Interactive Inspectable Simulation-Based Training System AI Magazine, 5, pp. 15–15 (1984)
42. Hornecker E., Buur J.: Getting a grip on tangible interaction: a framework on physical space and social interaction Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 437–446. Association for Computing Machinery, New York, NY, USA (2006) https://doi.org/10.1007/978-3-031-19682-9_78
43. Huber C.: Matthew 25: Prayer for children with disabilities, https://www.worldvision.org/child-protection-news-stories/matthew-25-pray-for-children-with-disabilities, (2024)
44. Inkson K.: Understanding Careers: The Metaphors of Working Lives, SAGE Publications, Inc., Thousand Oaks, California, (2007)
https://doi.org/10.4135/9781483328867
45. Joshi A., Allessio D., Magee J., Whitehill J., Arroyo I., Woolf B., Sclaroff S., Betke M.: Affect-driven Learning Outcomes Prediction in Intelligent Tutoring Systems 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019). pp. 1–5 (2019) https://doi.org/10.1109/FG.2019.8756624
46. Kamalov F., Santandreu Calonge D., Gurrib I.: New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution Sustainability, 15, pp. 12451 (2023) https://doi.org/10.3390/su151612451
47. Kapoor A., Burleson W., Picard R.W.: Automatic prediction of frustration International Journal of Human-Computer Studies, 65, pp. 724–736 (2007) https://doi.org/10.1016/j.ijhcs.2007.02.003
48. Karumbaiah S., Lizarralde R., Allessio D., Woolf B., Arroyo I., Wixon N.: Addressing Student Behavior and Affect with Empathy and Growth Mindset. International Educational Data Mining Society, (2017)
49. King J., Sabelli N., Kelly H.: Preamble on Policy Issues Global Resources for Online Education (GROE), Tempe Arizona, pp. 23–26 (2009)
50. Kucak D., Juricic V., Dambic G.: Machine Learning in Education – a Survey of Current Research Trends in Katalinic, B. (ed.) DAAAM Proceedings. vol. 1. pp. 0406–0410. DAAAM International Vienna (2018)
https://doi.org/10.2507/29th.daaam.proceedings.059
51. Kulik J.A., Fletcher J.D.: Effectiveness of Intelligent Tutoring Systems: A Meta-Analytic Review Review of Educational Research, 86, pp. 42–78 (2016) https://doi.org/10.3102/0034654315581420
52. Kweilin Ellingrud, Saurabh Sanghvi, Gurneet Singh Dandona, Anu Madgavkar, Michael Chui, Olivia White, Paige Hasebe: Generative AI and the future of work in America | McKinsey, McKinsey Global Institue, (2023)
53. Lane H.C., Cahill C., Foutz S., Auerbach D., Noren D., Lussenhop C., Swartout W.: The Effects of a Pedagogical Agent for Informal Science Education on Learner Behaviors and Self-efficacy in Lane, H.C., Yacef, K., Mostow, J., and Pavlik, P. (eds.) Artificial Intelligence in Education. pp. 309–318. Springer, Berlin, Heidelberg (2013) https://doi.org/10.1007/978-3-642-39112-5_32
54. Lane H.C., Hays M.J., Core M.G., Auerbach D.: Learning intercultural communication skills with virtual humans: Feedback and fidelity. Journal of Educational Psychology, 105, pp. 1026–1035 (2013) https://doi.org/10.1037/a0031506
55. Laurillard D., Kolokitha M., Mellar H., Selwyn N., Noss R.: Learning through life: The role of technology (2008)
56. Lee C.: AI Plagairism Changers: How Academic Leaders can Prepare Institutions, (2023)
57. Lee W., Allessio D., Rebelsky W., Satish Gattupalli S., Yu H., Arroyo I., Betke M., Bargal S., Murray T., Sylvia F., Woolf B.P.: Measurements and Interventions to Improve Student Engagement Through Facial Expression Recognition Adaptive Instructional Systems: 4th International Conference, AIS 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, June 26 – July 1, 2022, Proceedings. pp. 286–301. Springer-Verlag, Berlin, Heidelberg (2022) https://doi.org/10.1007/978-3-031-05887-5_20
58. Lester J.C., Ha E.Y., Lee S.Y., Mott B.W., Rowe J.P., Sabourin J.L.: Serious Games Get Smart: Intelligent Game-Based Learning Environments AI Magazine, 34, pp. 31–45 (2013) https://doi.org/10.1609/aimag.v34i4.2488
59. Levonian Z., Li C., Zhu W., Gade A., Henkel O., Postle M.-E., Xing W.: Retrieval-augmented Generation to Improve Math Question-Answering: Trade-offs Between Groundedness and Human Preference, http://arxiv.org/abs/2310.03184, (2023)
60. Liang Y., Wang J., Zhu H., Wang L., Qian W., Lan Y.: Prompting large language models with chain-of-thought for few-shot knowledge base question generation arXiv preprint arXiv:2310.08395, (2023) https://doi.org/10.18653/v1/2023.emnlp-main.263
61. Lindgren R., Johnson-Glenberg M.: Emboldened by embodiment: Six precepts for research on embodied learning and mixed reality Educational Researcher, 42, pp. 445–452 (2013) https://doi.org/10.3102/0013189X13511661
62. Liu N., Wang Z., Baraniuk R., Lan A.: Open-ended Knowledge Tracing for Computer Science Education Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. pp. 3849–3862. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates (2022) https://doi.org/10.18653/v1/2022.emnlp-main.254
63. Macedonia M.: Embodied Learning: Why at School the Mind Needs the Body Front. Psychol., 10, (2019) https://doi.org/10.3389/fpsyg.2019.02098
64. Maghsudi S., Lan A., Xu J., Schaar M. van der: Personalized Education in the AI Era: What to Expect Next?, http://arxiv.org/abs/2101.10074, (2021)
https://doi.org/10.1109/MSP.2021.3055032
65. Mani G., Chen F., Cross S., Kalil T., Gopalakrishnan V., Rossi F., Stanley K.: Artificial Intelligence’s Grand Challenges: Past, Present, and Future AI Magazine, 42, pp. 61–75 (2021) https://doi.org/10.1002/j.2371-9621.2021.tb00012.x
66. Matsuda M.: COMMENTARY: We must be proactive in guiding the influence of artificial intelligence on education, https://edsource.org/2024/we-must-be-proactive-in-guiding-the-influence-of-artificial-intelligence-on-education/708898
67. Maurer R.: AI Skills Will Be Crucial for Job Seekers, https://www.shrm.org/topics-tools/news/talent-acquisition/ai-skills-will-be-crucial-job-seekers
68. McArthur D., Lewis M., Bishary M.: The Roles of Artificial Intelligence in Education: Current Progress and Future Prospects Journal of Educational Technology, 1, pp. 42–80 (2005) https://doi.org/10.26634/jet.1.4.972
69. Meyer J., Jansen T., Schiller R., Liebenow L.W., Steinbach M., Horbach A., Fleckenstein J.: Using LLMs to bring evidence-based feedback into the classroom: AI-generated feedback increases secondary students’ text revision, motivation, and positive emotions Computers and Education: Artificial Intelligence, 6, pp. 100199 (2024) https://doi.org/10.1016/j.caeai.2023.100199
70. Mostow J.: Foreword What is AI? And What Does It Have to Do with Software Engineering? IEEE Transactions on Software Engineering, SE-11, pp. 1253–1256 (1985) https://doi.org/10.1109/TSE.1985.231876
71. Nathan M.J., Williams-Pierce C., Walkington C., Abrahamson D., Ottmar E., Soto H., Alibali M.W.: Embodied Design for Mathematical Imagination and Cognition (2021)
72. Negi A., Ghildiyal B.: Education 2030: A Roadmap to E-Learning Excellence International Conference on Knowledge Management in Higher Education Institutions (ICKHI 2024) (2024)
73. Nemirovsky R., Tierney C., Wright T.: Body Motion and Graphing Cognition and Instruction, 16, pp. 119–172 (1998) https://doi.org/10.1207/s1532690xci1602_1
74. Novack M.A., Goldin-Meadow S., Woodward A.L.: Learning from gesture: How early does it happen? Cognition, 142, pp. 138 (2015)
https://doi.org/10.1016/j.cognition.2015.05.018
75. Nwana H.S.: Intelligent tutoring systems: an overview Artif Intell Rev, 4, pp. 251–277 (1990) https://doi.org/10.1007/BF00168958
76. Nye B.D., Mee D., Core M.G.: Generative Large Language Models for Dialog-Based Tutoring: An Early Consideration of Opportunities and Concerns (2023)
77. Oblinger D.: Game Changers: Education and Information Technologies, (2012)
78. Pamuk Z.: Artificial intelligence and the problem of judgment Ethics and International Affairs, 37, pp. 232–243 (2023) https://doi.org/10.1017/S089267942300014X
79. Phillips A.J.: Transnationalism and the Dominican Republic: The Effect on Student Identity and Achievement
80. Qawqzeh Y.: Exploring the Influence of Student Interaction with ChatGPT on Critical Thinking, Problem Solving, and Creativity IJIET, 14, pp. 596–601 (2024) https://doi.org/10.18178/ijiet.2024.14.4.2082
81. Rasul I., Castro F., Arroyo I.: Towards Embodied Wearable Intelligent Tutoring Systems Augmented Intelligence and Intelligent Tutoring Systems: 19th International Conference, ITS 2023, Corfu, Greece, June 2–5, 2023, Proceedings. pp. 298–306. Springer-Verlag, Berlin, Heidelberg (2023) https://doi.org/10.1007/978-3-031-32883-1_26
82. Regan P.M., Jesse J.: Ethical challenges of edtech, big data and personalized learning: twenty-first century student sorting and tracking Ethics and Information Technology, 21, pp. 167–179 (2019) https://doi.org/10.1007/s10676-018-9492-2
83. Robinson L.: ChatGPT Can Strengthen Student Writing, https://www.languagemagazine.com/2023/01/25/ai-can-strengthen-student-writing-not-weaken-it/, (2023)
84. Ruiz N., Yu H., Allessio D.A., Jalal M., Joshi A., Murray T., Magee J.J., Delgado K., Ablavsky V., Sclaroff S., Arroyo I., Woolf B.P., Bargal S.A., Betke M.: ATL-BP: a student engagement dataset and model for affect transfer learning for behavior prediction (2022) https://doi.org/10.1109/TBIOM.2022.3210479
85. Ruiz N., Yu H., Allessio D.A., Jalal M., Joshi A., Murray T., Magee J.J., Whitehill J.R., Ablavsky V., Arroyo I., Woolf B.P., Sclaroff S., Betke M.: Leveraging Affect Transfer Learning for Behavior Prediction in an Intelligent Tutoring System, http://arxiv.org/abs/2002.05242, (2021) https://doi.org/10.1109/FG52635.2021.9667001
86. Sachan M., Dubey A., Hovy E.H., Mitchell T.M., Roth D., Xing E.P.: Discourse in Multimedia: A Case Study in Extracting Geometry Knowledge from Textbooks Computational Linguistics, 45, pp. 627–665 (2020) https://doi.org/10.1162/coli_a_00360
87. Scarlatos A., Lan A.: Tree-Based Representation and Generation of Natural and Mathematical Language in Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp. 3714–3730. Association for Computational Linguistics, Toronto, Canada (2023) https://doi.org/10.18653/v1/2023.acl-long.205
88. Seo K., Tang J., Roll I., Fels S., Yoon D.: The impact of artificial intelligence on learner–instructor interaction in online learning International Journal of Educational Technology in Higher Education, 18, pp. 54 (2021) https://doi.org/10.1186/s41239-021-00292-9
89. Shute V.J.: The SAGE Encyclopedia of Educational Technology (2015)
90. Stafford D., Flatley R.: OpenStax,
https://annurev.publisher.ingentaconnect.com/contentone/annurev/tca/2018/00000020/00000001/art00012
91. Swartout W., Artstein R., Forbell E., Foutz S., Lane H.C., Lange B., Morie J., Noren D., Rizzo S., Traum D.: Virtual humans for learning AI Magazine, 34, pp. 13–30 (2013) https://doi.org/10.1609/aimag.v34i4.2487
92. Toshniwal S., Moshkov I., Narenthiran S., Gitman D., Jia F., Gitman I.: OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset, http://arxiv.org/abs/2402.10176, (2024)
93. Tsiros A., Palladini A.: Towards a Human-Centric Design Framework for AI Assisted Music Production Presented at the Proceedings of the International Conference on New Interfaces for Musical Expression (2020)
94. UNESCO: Global Education Monitoring Report 2020: Inclusion and Education-All Means All, (2020)
95. VanLehn K., Corbett A., Ramachandran S., Underwood J., Jensen C.: Intelligent Virtual Environments Global Resources for Online Education (GROE), Tempe Arizona, pp. 23–26 (2009)
96. VanLEHN K.: The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems Educational Psychologist, 46, pp. 197–221 (2011) https://doi.org/10.1080/00461520.2011.611369
97. VanLehn K., Zhang L., Burleson W., Girard S., Hidago-Pontet Y.: Can a Non-Cognitive Learning Companion Increase the Effectiveness of a Meta-Cognitive Learning Strategy? IEEE Transactions on Learning Technologies, 10, pp. 277–289 (2017) https://doi.org/10.1109/TLT.2016.2594775
98. Wang S., Xu T., Li H., Zhang C., Liang J., Tang J., Yu P.S., Wen Q.: Large Language Models for Education: A Survey and Outlook, http://arxiv.org/abs/2403.18105, (2024)
99. Wang Y., Heffernan N.T.: The “assistance” model: Leveraging how many hints and attempts a student needs Twenty-fourth international FLAIRS conference (2011)
100. Wang Z., Lan A., Baraniuk R.: Math Word Problem Generation with Mathematical Consistency and Problem Context Constraints in Moens, M.-F., Huang, X., Specia, L., and Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. pp. 5986–5999. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic (2021)
https://doi.org/10.18653/v1/2021.emnlp-main.484
101. Weber-Wulff D., Anohina-Naumeca A., Bjelobaba S., Foltýnek T., Guerrero-Dib J., Popoola O., Šigut P., Waddington L.: Testing of detection tools for AI-generated text Int J Educ Integr, 19, pp. 1–39 (2023)
102. White B.Y., Frederiksen J.R.: QUEST: Qualitative understanding of electrical system troubleshooting, BBN Laboratories, (1985)
103. Willms J.D.: Student engagement at school A sense of belonging and participation. Paris: Organisation for Economic Co-operation and Development, pp. 1–84 (2003)
104. Woolf B.P., Arroyo I., Muldner K., Burleson W., Cooper D.G., Dolan R., Christopherson R.M.: The Effect of Motivational Learning Companions on Low Achieving Students and Students with Disabilities in Aleven, V., Kay, J., and Mostow, J. (eds.) Intelligent Tutoring Systems. pp. 327–337. Springer, Berlin, Heidelberg (2010)
https://doi.org/10.1007/978-3-642-13388-6_37
105. Xiao C., Ma W., Song Q., Xu S.X., Zhang K., Wang Y., Fu Q.: Human-AI Collaborative Essay Scoring: A Dual-Process Framework with LLMs, http://arxiv.org/abs/2401.06431, (2024)
106. Xiao C., Xu S.X., Zhang K., Wang Y., Xia L.: Evaluating Reading Comprehension Exercises Generated by LLMs: A Showcase of ChatGPT in Education Applications in Kochmar, E., Burstein, J., Horbach, A., Laarmann-Quante, R., Madnani, N., Tack, A., Yaneva, V., Yuan, Z., and Zesch, T. (eds.) Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023). pp. 610–625. Association for Computational Linguistics, Toronto, Canada (2023) https://doi.org/10.18653/v1/2023.bea-1.52
107. Yağcı M.: Educational data mining: prediction of students’ academic performance using machine learning algorithms Smart Learning Environments, 9, pp. 11 (2022) https://doi.org/10.1186/s40561-022-00192-z
108. Yu H., Allessio D.A., Lee W., Rebelsky W., Sylvia F., Murray T., Magee J.J., Arroyo I., Woolf B.P., Bargal S.A., Betke M.: COVES: A Cognitive-Affective Deep Model that Personalizes Math Problem Difficulty in Real Time and Improves Student Engagement with an Online Tutor Proceedings of the 31st ACM International Conference on Multimedia. pp. 6152–6160. Association for Computing Machinery, New York, NY, USA (2023) https://doi.org/10.1145/3581783.3613965
109. Yu H., Gupta A., Lee W., Arroyo I., Betke M., Allesio D., Murray T., Magee J., Woolf B.P.: Measuring and Integrating Facial Expressions and Head Pose as Indicators of Engagement and Affect in Tutoring Systems Adaptive Instructional Systems. Adaptation Strategies and Methods: Third International Conference, AIS 2021, Held as Part of the 23rd HCI International Conference, HCII 2021, Virtual Event, July 24–29, 2021, Proceedings, Part II. pp. 219–233. Springer-Verlag, Berlin, Heidelberg (2021) https://doi.org/10.1145/3581783.3613965
110. Zellers R., Holtzman A., Bisk Y., Farhadi A., Choi Y.: HellaSwag: Can a Machine Really Finish Your Sentence?, http://arxiv.org/abs/1905.07830, (2019)
https://doi.org/10.18653/v1/P19-1472
111. Zhang M., Baral S., Heffernan N., Lan A.: Automatic Short Math Answer Grading via In-context Meta-learning Presented at the Proceedings of the 15th International Conference on Educational Data Mining (2022)
112. Zhong Y., Jiang C., Xu W., Li J.J.: Discourse Level Factors for Sentence Deletion in Text Simplification Proceedings of the AAAI Conference on Artificial Intelligence, 34, pp. 9709–9716 (2020) https://doi.org/10.1609/aaai.v34i05.6520
113. Zhou E., Lee D.: Generative artificial intelligence, human creativity, and art PNAS Nexus, 3, pp. pgae052 (2024) https://doi.org/10.1093/pnasnexus/pgae052
114. Zirar A., Ali S.I., Islam N.: Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda Technovation, 124, pp. 102747 (2023) https://doi.org/10.1016/j.technovation.2023.102747
115. Redish E.F., Kuo E.: Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology Sci & Educ, 24, pp. 561–590 (2015)
https://doi.org/10.1007/s11191-015-9749-7
116. Porter S.G., Greene K., Esposito M.K.: Access and inclusion of students with disabilities in virtual learning environments: Implications for post-pandemic teaching International Journal of Multicultural Education, 23, pp. 43–61 (2021)
https://doi.org/10.18251/ijme.v23i3.3011